1
|
Mullen N, Curneen J, Donlon PT, Prakash P, Bancos I, Gurnell M, Dennedy MC. Treating Primary Aldosteronism-Induced Hypertension: Novel Approaches and Future Outlooks. Endocr Rev 2024; 45:125-170. [PMID: 37556722 PMCID: PMC10765166 DOI: 10.1210/endrev/bnad026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension and is associated with increased morbidity and mortality when compared with blood pressure-matched cases of primary hypertension. Current limitations in patient care stem from delayed recognition of the condition, limited access to key diagnostic procedures, and lack of a definitive therapy option for nonsurgical candidates. However, several recent advances have the potential to address these barriers to optimal care. From a diagnostic perspective, machine-learning algorithms have shown promise in the prediction of PA subtypes, while the development of noninvasive alternatives to adrenal vein sampling (including molecular positron emission tomography imaging) has made accurate localization of functioning adrenal nodules possible. In parallel, more selective approaches to targeting the causative aldosterone-producing adrenal adenoma/nodule (APA/APN) have emerged with the advent of partial adrenalectomy or precision ablation. Additionally, the development of novel pharmacological agents may help to mitigate off-target effects of aldosterone and improve clinical efficacy and outcomes. Here, we consider how each of these innovations might change our approach to the patient with PA, to allow more tailored investigation and treatment plans, with corresponding improvement in clinical outcomes and resource utilization, for this highly prevalent disorder.
Collapse
Affiliation(s)
- Nathan Mullen
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| | - James Curneen
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| | - Padraig T Donlon
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark Gurnell
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Michael C Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| |
Collapse
|
2
|
Habibi J, Homan C, Naz H, Chen D, Lastra G, Whaley-Connell A, Sowers JR, Jia G. Endothelial MRs Mediate Western Diet-Induced Lipid Disorders and Skeletal Muscle Insulin Resistance in Females. Endocrinology 2023; 164:bqad091. [PMID: 37289042 PMCID: PMC10284339 DOI: 10.1210/endocr/bqad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Consumption of a Western diet (WD) consisting of excess fat and carbohydrates activates the renin-angiotensin-aldosterone system, which has emerged as an important risk factor for systemic and tissue insulin resistance. We recently discovered that activated mineralocorticoid receptors (MRs) in diet-induced obesity induce CD36 expression, increase ectopic lipid accumulation, and result in systemic and tissue insulin resistance. Here, we have further investigated whether endothelial cell (EC)-specific MR (ECMR) activation participates in WD-induced ectopic skeletal muscle lipid accumulation, insulin resistance, and dysfunction. Six-week-old female ECMR knockout (ECMR-/-) and wild-type (ECMR+/+) mice were fed either a WD or a chow diet for 16 weeks. ECMR-/- mice were found to have decreased WD-induced in vivo glucose intolerance and insulin resistance at 16 weeks. Improved insulin sensitivity was accompanied by increased glucose transporter type 4 expression in conjunction with improved soleus insulin metabolic signaling in phosphoinositide 3-kinases/protein kinase B and endothelial nitric oxide synthase activation. Additionally, ECMR-/- also blunted WD-induced increases in CD36 expression and associated elevations in soleus free fatty acid, total intramyocellular lipid content, oxidative stress, and soleus fibrosis. Moreover, in vitro and in vivo activation of ECMR increased EC-derived exosomal CD36 that was further taken up by skeletal muscle cells, leading to increased skeletal muscle CD36 levels. These findings indicate that in the context of an obesogenic WD, enhanced ECMR signaling increases EC-derived exosomal CD36 resulting in increased uptake and elevated concentrations of CD36 in skeletal muscle cells, contributing to increased lipid metabolic disorders and soleus insulin resistance.
Collapse
Affiliation(s)
- Javad Habibi
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Carlton Homan
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huma Naz
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Dongqing Chen
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Guido Lastra
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - Adam Whaley-Connell
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Medicine–Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
| | - James R Sowers
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Medicine–Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Guanghong Jia
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO, 65201, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
3
|
Progress on Genetic Basis of Primary Aldosteronism. Biomedicines 2021; 9:biomedicines9111708. [PMID: 34829937 PMCID: PMC8615950 DOI: 10.3390/biomedicines9111708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Primary aldosteronism (PA) is a heterogeneous group of disorders caused by the autonomous overproduction of aldosterone with simultaneous suppression of plasma renin activity (PRA). It is considered to be the most common endocrine cause of secondary arterial hypertension (HT) and is associated with a high rate of cardiovascular complications. PA is most often caused by a bilateral adrenal hyperplasia (BAH) or aldosterone-producing adenoma (APA); rarer causes of PA include genetic disorders of steroidogenesis (familial hyperaldosteronism (FA) type I, II, III and IV), aldosterone-producing adrenocortical carcinoma, and ectopic aldosterone-producing tumors. Over the last few years, significant progress has been made towards understanding the genetic basis of PA, classifying it as a channelopathy. Recently, a growing body of clinical evidence suggests that mutations in ion channels appear to be the major cause of aldosterone-producing adenomas, and several mutations within the ion channel encoding genes have been identified. Somatic mutations in four genes (KCNJ5, ATP1A1, ATP2B3 and CACNA1D) have been identified in nearly 60% of the sporadic APAs, while germline mutations in KCNJ5 and CACNA1H have been reported in different subtypes of familial hyperaldosteronism. These new insights into the molecular mechanisms underlying PA may be associated with potential implications for diagnosis and therapy.
Collapse
|