1
|
Safi D, Khouri F, Zareef R, Arabi M. Antivirals in COVID-19: A Focus on Pediatric Cardiac Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2025; 2025:4573096. [PMID: 40196380 PMCID: PMC11972864 DOI: 10.1155/cjid/4573096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025]
Abstract
The COVID-19 pandemic created an unprecedented public health crisis, driven by its rapid global spread and the urgent need for worldwide collaborative interventions to contain it. This urgency spurred the search for therapeutic agents to prevent or manage the infection. Among these, various types of antivirals emerged as a prominent treatment option, supported by a wealth of observational studies and randomized controlled trials. The results from such studies conflict, with some concluding efficacy and others the lack thereof, with variability also occurring depending on the severity of COVID-19 in the studied population. In addition, many agents have been explored using randomized controlled trials-the gold standard in evaluating the efficacy of an intervention-to only a limited degree, with most of the evidence behind their use concluded using observational studies. Thus, the sheer volume of data has made it challenging to resolve inconsistencies and determine true efficacy. Furthermore, there is a paucity in the literature regarding the use of antivirals in the pediatric population infected with COVID-19, with their use being extrapolated from the results of studies done on adult patients. As such, additional trials are needed to solidify the effectiveness of antivirals in managing COVID-19, particularly in the underexplored and especially vulnerable pediatric cardiac patients. Therefore, utilizing the results from randomized controlled trials, this narrative review evaluates the rationale behind the use of antivirals, summarizes the findings from the literature, and concludes with a focused discussion on their application in pediatric cardiac patients.
Collapse
Affiliation(s)
- Dalia Safi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Farah Khouri
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rana Zareef
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mariam Arabi
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
2
|
El-Hosseny MF, Seadawy MG, Abdel-Monem MO, Hassan MG. Complete genome sequencing and probiotic characterization of promising lactic acid bacterial strains isolated from dairy products in Egyptian markets. BMC Microbiol 2025; 25:67. [PMID: 39915700 PMCID: PMC11804002 DOI: 10.1186/s12866-025-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Probiotics refer to live bacteria that, when administered in a sufficiently, exert a beneficial influence on human health. Due to the probiotics' beneficial health advantages, dietary supplements are expanding rapidly as a self-care interest worldwide. It may be beneficial to administer probiotic strains resistant to antibiotics concurrently with an antibiotic treatment. Our study investigates nineteen dairy products collected from Egyptian markets, isolated, identified and underwent a characterization for probiotic features under demanding circumstances as NaCl, acid and bile salt environments. The antibiotic sensitivity test was performed later to the antimicrobial assessment against widespread both negative and positive gram-stained bacteria infecting humans, along with the antiviral evaluation against (SARS-CoV-2), the virus that has disturbed the world recently. RESULTS Out of nineteen investigated isolates, five potential probiotic isolates were examined for probiotic characteristics. Our tested samples were of dairy origin (yogurt, cottage-cheese and sour milk) in Egypt, were identified as Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus and Pediococcus acidilactici. These promising isolates had withstood stressful factors, such as NaCl, acid, bile salts, and the antimicrobial advance. The genomes were characterized for the physiology, safety, and efficacy of these isolates for probiotic qualities plus the presence of mobile genetic components and prophages that influence the genome's flexibility. They lack virulence factors and pathogenicity, rather than the lack of antibiotic resistance genes. CONCLUSION Three promising isolates underwent complete genome sequencing with high-throughput second generation technology followed by comprehensive bioinformatic analysis. The results showed that our isolates possess traits enabling resilience to antimicrobial effects and stress factors that might cause problems in the human gut. Several trustworthy genomic analysis methods were used to confirm and provide detailed illustrations of all traits. Genomic analyses confirmed the presence of stable genomes due to including mobile genetic components such as phages and CRISPR clusters, which validate their quality and safe usage for human health.
Collapse
Affiliation(s)
- Mostafa F El-Hosseny
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt.
- Botany and Microbiology Department, Faculty of Science, Banha University, Banha, Egypt.
| | - Mohamed G Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
| | | | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Banha University, Banha, Egypt
| |
Collapse
|
3
|
Kibria MK, Ali MA, Yaseen M, Khan IA, Bhat MA, Islam MA, Mahumud RA, Mollah MNH. Discovery of Bacterial Key Genes from 16S rRNA-Seq Profiles That Are Associated with the Complications of SARS-CoV-2 Infections and Provide Therapeutic Indications. Pharmaceuticals (Basel) 2024; 17:432. [PMID: 38675393 PMCID: PMC11053588 DOI: 10.3390/ph17040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to both human life and global economies. Particularly, COVID-19 patients with weak immunity may suffer from different complications due to the bacterial co-infections/super-infections/secondary infections. Therefore, different variants of alternative antibacterial therapeutic agents are required to inhibit those infection-causing drug-resistant pathogenic bacteria. This study attempted to explore these bacterial pathogens and their inhibitors by using integrated statistical and bioinformatics approaches. By analyzing bacterial 16S rRNA sequence profiles, at first, we detected five bacterial genera and taxa (Bacteroides, Parabacteroides, Prevotella Clostridium, Atopobium, and Peptostreptococcus) based on differentially abundant bacteria between SARS-CoV-2 infection and control samples that are significantly enriched in 23 metabolic pathways. A total of 183 bacterial genes were found in the enriched pathways. Then, the top-ranked 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) were selected as the pathogenic bacterial key genes (bKGs) by their protein-protein interaction (PPI) network analysis. Then, we detected bKG-guided top-ranked eight drug molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Entreatinib, Digitoxin, and Elbasvir) by molecular docking. Finally, the binding stability of the top-ranked three drug molecules (Bemcentinib, Ledipasvir, and Velpatasvir) against three receptors (hldD, mlaA, and lptD) was investigated by computing their binding free energies with molecular dynamic (MD) simulation-based MM-PBSA techniques, respectively, and was found to be stable. Therefore, the findings of this study could be useful resources for developing a proper treatment plan against bacterial co-/super-/secondary-infection in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Md. Kaderi Kibria
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
- Department of Statistics, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Ahad Ali
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan;
| | - Imran Ahmad Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Md. Ariful Islam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
| | - Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Md. Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
| |
Collapse
|
4
|
Arman BY, Brun J, Hill ML, Zitzmann N, von Delft A. An Update on SARS-CoV-2 Clinical Trial Results-What We Can Learn for the Next Pandemic. Int J Mol Sci 2023; 25:354. [PMID: 38203525 PMCID: PMC10779148 DOI: 10.3390/ijms25010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed over 7 million lives worldwide, providing a stark reminder of the importance of pandemic preparedness. Due to the lack of approved antiviral drugs effective against coronaviruses at the start of the pandemic, the world largely relied on repurposed efforts. Here, we summarise results from randomised controlled trials to date, as well as selected in vitro data of directly acting antivirals, host-targeting antivirals, and immunomodulatory drugs. Overall, repurposing efforts evaluating directly acting antivirals targeting other viral families were largely unsuccessful, whereas several immunomodulatory drugs led to clinical improvement in hospitalised patients with severe disease. In addition, accelerated drug discovery efforts during the pandemic progressed to multiple novel directly acting antivirals with clinical efficacy, including small molecule inhibitors and monoclonal antibodies. We argue that large-scale investment is required to prepare for future pandemics; both to develop an arsenal of broad-spectrum antivirals beyond coronaviruses and build worldwide clinical trial networks that can be rapidly utilised.
Collapse
Affiliation(s)
- Benediktus Yohan Arman
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.B.); (N.Z.)
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Juliane Brun
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.B.); (N.Z.)
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Michelle L. Hill
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Nicole Zitzmann
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (J.B.); (N.Z.)
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Annette von Delft
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
- Centre for Medicine Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
5
|
Bai AD, Jiang Y, Nguyen DL, Lo CKL, Stefanova I, Guo K, Wang F, Zhang C, Sayeau K, Garg A, Loeb M. Comparison of Preprint Postings of Randomized Clinical Trials on COVID-19 and Corresponding Published Journal Articles: A Systematic Review. JAMA Netw Open 2023; 6:e2253301. [PMID: 36705921 DOI: 10.1001/jamanetworkopen.2022.53301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
IMPORTANCE Randomized clinical trials (RCTs) on COVID-19 are increasingly being posted as preprints before publication in a scientific, peer-reviewed journal. OBJECTIVE To assess time to journal publication for COVID-19 RCT preprints and to compare differences between pairs of preprints and corresponding journal articles. EVIDENCE REVIEW This systematic review used a meta-epidemiologic approach to conduct a literature search using the World Health Organization COVID-19 database and Embase to identify preprints published between January 1 and December 31, 2021. This review included RCTs with human participants and research questions regarding the treatment or prevention of COVID-19. For each preprint, a literature search was done to locate the corresponding journal article. Two independent reviewers read the full text, extracted data, and assessed risk of bias using the Cochrane Risk of Bias 2 tool. Time to publication was analyzed using a Cox proportional hazards regression model. Differences between preprint and journal article pairs in terms of outcomes, analyses, results, or conclusions were described. Statistical analysis was performed on October 17, 2022. FINDINGS This study included 152 preprints. As of October 1, 2022, 119 of 152 preprints (78.3%) had been published in journals. The median time to publication was 186 days (range, 17-407 days). In a multivariable model, larger sample size and low risk of bias were associated with journal publication. With a sample size of less than 200 as the reference, sample sizes of 201 to 1000 and greater than 1000 had hazard ratios (HRs) of 1.23 (95% CI, 0.80-1.91) and 2.19 (95% CI, 1.36-3.53) for publication, respectively. With high risk of bias as the reference, medium-risk articles with some concerns for bias had an HR of 1.77 (95% CI, 1.02-3.09); those with a low risk of bias had an HR of 3.01 (95% CI, 1.71-5.30). Of the 119 published preprints, there were differences in terms of outcomes, analyses, results, or conclusions in 65 studies (54.6%). The main conclusion in the preprint contradicted the conclusion in the journal article for 2 studies (1.7%). CONCLUSIONS AND RELEVANCE These findings suggest that there is a substantial time lag from preprint posting to journal publication. Preprints with smaller sample sizes and high risk of bias were less likely to be published. Finally, although differences in terms of outcomes, analyses, results, or conclusions were observed for preprint and journal article pairs in most studies, the main conclusion remained consistent for the majority of studies.
Collapse
Affiliation(s)
- Anthony D Bai
- Division of Infectious Diseases, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yunbo Jiang
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - David L Nguyen
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Carson K L Lo
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin Guo
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Frank Wang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cindy Zhang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kyle Sayeau
- Mental Health and Addictions Care Program, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Akhil Garg
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Mark Loeb
- Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Division of Medical Microbiology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Elgohary MA, Ali A, El-Masry TA, Faidah H, Bantun F, Elkholy AM, Fahim JS, Elgamal NN, Mohamed ME, Seadawy MG, Helal AM, De Waard M, Shishtawy HM, El-Bouseary MM. Development and validation of a predictive scoring system for in-hospital mortality in COVID-19 Egyptian patients: a retrospective study. Sci Rep 2022; 12:22352. [PMID: 36572690 PMCID: PMC9791155 DOI: 10.1038/s41598-022-26471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
SARS-CoV-2 virus has rapidly spread worldwide since December 2019, causing COVID-19 disease. In-hospital mortality is a common indicator for evaluating treatment outcomes. Therefore, the developing and validating a simple score system from observational data could assist in modulating the management procedures. A retrospective cohort study included all data records of patients with positive PCR for SARS-CoV-2. The factors that associated with mortality were analyzed, then allocation of potential predictors of mortality was executed using different logistic regression modeling, subsequently scoring system was developed from the most weighted predictors. The mortality rate of patients with COVID-19 pneumonia was 28.5% and 28.74%, respectively. The most significant factors that affected in-hospital mortality were old age (> 60 years), delay in hospital admission (> 4 days), high neutrophil/lymphocyte ratio "NLR" (> 3); higher computed tomography severity score; and CT-SS (> 20), in addition to using remdesivir and tocilizumab in the treatment protocol (P < 0.001 for all). The validity of the newly performed score was significant; the AUC was 85%, P < 0.001, and its prognostic utility was good; the AUC was 75%, P < 0.001. The prognostic utility of newly developed score system (EGY.Score) was excellent and could be used to adjust the treatment strategy of highly at-risk patients with COVID-19 pneumonia.
Collapse
Affiliation(s)
| | - Asmaa Ali
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt ,grid.440785.a0000 0001 0743 511XDepartment of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 P. R. China
| | - Thanaa A. El-Masry
- grid.412258.80000 0000 9477 7793Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hani Faidah
- grid.412832.e0000 0000 9137 6644Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farkad Bantun
- grid.412832.e0000 0000 9137 6644Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad M. Elkholy
- Department of Tropical Medicine, Almaza Military Fever Hospital, Cairo, Egypt
| | - Jaklin S. Fahim
- Department of Microbiology, Almaza Military Fever Hospital, Cairo, Egypt
| | - Nabila N. Elgamal
- Department of Tropical Medicine, Almaza Military Fever Hospital, Cairo, Egypt
| | | | | | - Amro M. Helal
- Department of Public Health, Almaza Military Fever Hospital, Cairo, Egypt
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France ,grid.4817.a0000 0001 2189 0784L’institut du Thorax, INSERM, CNRS, Univ Nantes, F-44007 Nantes, France ,grid.460782.f0000 0004 4910 6551Université de Nice Sophia-Antipolis, LabEx “Ion Channels, Science & Therapeutics”, F-06560 Valbonne, France
| | | | - Maisra M. El-Bouseary
- grid.412258.80000 0000 9477 7793Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|