1
|
Pujo JM, Fitriani DY, Ben Saad H, Ghariani M, Dghim A, Mellouli M, Burin A, Mutricy R, Houcke S, Roujansky A, Mansyur M, Nkontcho F, de Toffol B, Ben Amara I, Kallel H. The effects of prolonged stress exposure on the brain of rats and insights to understand the impact of work-related stress on caregivers. Front Behav Neurosci 2023; 17:1288814. [PMID: 38098499 PMCID: PMC10720043 DOI: 10.3389/fnbeh.2023.1288814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Stress exposure is a significant concern in the healthcare sector. This animal model study aims to reproduce caregivers' working conditions and determine their impact on the brain. Method Twenty-four healthy male rats of the Wistar strain were divided into four groups. Three groups were submitted each to one stressor for 21 days, while the fourth group was used as a control. Stressors were food and water deprivation (FW), permanent illumination (PI), and forced swimming (FS). At the end of the experiment, rats were euthanized, and stress biomarkers, biological parameters, and DNA damage were measured. Results Prooxidant biomarker rates increased in the different groups (+50 to +75%) compared to the control (p < 0.0001). Urinary corticosterone rates increased in all stressed animals, mainly in the PI group, with changes of up to +50% compared to the control group. Acetylcholinesterase levels decreased to -50% (p < 0.0001 for the three exposed groups). Total ATPase, (Na+/K+)-ATPase, and Mg2+-ATPase activities decreased in all stressed groups. The percentage of brain cell congestion and apoptosis was 3% for the FW group (p < 0.0001), 2% for the PI group (p < 0.0001), and 4% for the FS group (p < 0.0001) compared to the control (0.8%). DNA damage was observed in all exposed groups. Finally, we noticed behavioral changes and a depression-like syndrome in all stressed rats. Conclusion Stressful conditions such as the working environment of caregivers can trigger several pathophysiological processes leading to oxidative, neurochemical, and hypothalamic-pituitary-adrenal disorders. These changes can progress to cell damage and apoptosis in the brain and trigger psychological and physical disorders.
Collapse
Affiliation(s)
- Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, Cayenne, French Guiana
| | - Dewi Yunia Fitriani
- Community Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Occupational Medicine Specialist Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Occupational and Environmental Health Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Hajer Ben Saad
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Marwa Ghariani
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), LR15CBS07, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Amel Dghim
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Manel Mellouli
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Antoine Burin
- Emergency Department, Cayenne General Hospital, Cayenne, French Guiana
| | - Remi Mutricy
- Emergency Department, Cayenne General Hospital, Cayenne, French Guiana
| | - Stephanie Houcke
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana
| | - Ariane Roujansky
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana
| | - Muchtaruddin Mansyur
- Community Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Occupational Medicine Specialist Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Occupational and Environmental Health Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Flaubert Nkontcho
- Pharmacy Department, Cayenne General Hospital, Cayenne, French Guiana
| | | | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne, French Guiana
| |
Collapse
|
2
|
Li D, Liang H, Tong Y, Li Y. Association of dietary n-3 polyunsaturated fatty acids intake with depressive symptoms in midlife women. J Affect Disord 2020; 261:164-171. [PMID: 31630038 DOI: 10.1016/j.jad.2019.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/05/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND To study the association of n-3 polyunsaturated fatty acid (n-3 PUFA) intake from diet with depressive symptoms in midlife women. METHODS Data for this cross-sectional study were retrieved from baseline assessment of the Study of Women's Health Across the Nation (SWAN). Logistic regression and restricted cubic spline models were performed to examine the association n-3 PUFA intake with depressive symptoms. RESULTS A total of 3054 women aged 42-52 years were included in the present study. In overall midlife women, n-3 PUFA intake was not significantly associated with depressive symptoms (CES-D score ≥16) after adjustment for potential confounders. In early perimenopausal women, n-3 PUFA intake was inversely associated with depressive symptoms after adjustment for potential confounders. The fully adjusted OR with 95% CI of depressive symptoms were 0.062 (0.009-0.457) in the highest quartile (n-3 PUFAs intake was categorized by quartiles) compared with the lowest quartile for n-3 PUFA intake. Restricted cubic spline analyses showed that n-3 PUFA intake were dose-response inversely associated with depressive symptoms in early perimenopausal women. However, in premenopausal women, no significant association between depressive symptoms and n-3 PUFA intake was observed. LIMITATIONS This was a cross-sectional study, limiting causal inferences. CONCLUSION Dietary n-3 PUFA may be inversely associated with depressive symptoms in early perimenopausal women, but not in premenopausal women.
Collapse
Affiliation(s)
- Di Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hua Liang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
3
|
Spagnuolo MS, Bergamo P, Crescenzo R, Iannotta L, Treppiccione L, Iossa S, Cigliano L. Brain Nrf2 pathway, autophagy, and synaptic function proteins are modulated by a short-term fructose feeding in young and adult rats. Nutr Neurosci 2018; 23:309-320. [DOI: 10.1080/1028415x.2018.1501532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in Mediterranean Environment, National Research Council (CNR-ISPAAM), Naples, Italy
| | - Paolo Bergamo
- Department of Bio-Agrofood Science, Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | | | - Lucia Iannotta
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lucia Treppiccione
- Department of Bio-Agrofood Science, Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Ben Saad H, Kharrat N, Driss D, Gargouri M, Marrakchi R, Jammoussi K, Magné C, Boudawara T, Ellouz Chaabouni S, Zeghal KM, Hakim A, Ben Amara I. Effects of vanillin on potassium bromate-induced neurotoxicity in adult mice: impact on behavior, oxidative stress, genes expression, inflammation and fatty acid composition. Arch Physiol Biochem 2017; 123:165-174. [PMID: 28276710 DOI: 10.1080/13813455.2017.1283527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Vanillin is known to possess important antioxidant activity. OBJECTIVE The current study was conducted to establish the therapeutic efficiency of vanillin against potassium bromate (KBrO3)-induced depression-like behavior and oxidative stress in mice. MATERIAL AND METHODS Mice were exposed during 15 days either to potassium bromate (KBrO3), KBrO3+ vanillin or to only vanillin. RESULTS Our results revealed a significant modification in the fatty acid composition of the KBrO3-treated mice. In addition, KBrO3 induced a significant reduction in enzymatic activities and gene expressions, Na+ -K+ and Mg2+-ATPases, acetylcholinesterase and butylcholinesterase activities. The gene expression of tumor necrosis factor-α, interleukin-1β, interleukin-6 and COX2, significantly increased in the cerebrum of KBrO3-treated group. Histopathological observations were consistent with these effects. Co-treatment with vanillin significantly attenuated KBrO3-induced oxidative stress and inflammation. CONCLUSION This work suggests that vanillin mitigates KBrO3-induced depression, and that this neuroprotective effect proceeds through anti-oxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Hajer Ben Saad
- a Faculty of Medicine , Laboratory of Pharmacology, University of Sfax , Tunisia
| | - Nadia Kharrat
- b Laboratory of Biochemistry and Enzymatic Engineering of Lipases , Sfax University , Tunisia
| | - Dorra Driss
- c Enzymes and Bioconversions Laboratory, National Engineering School, University of Sfax , Tunisia
| | - Manel Gargouri
- d EA 2219 Géoarchitecture, University of Western Brittany, UFR Sciences & Techniques , Brest , France
| | - Rim Marrakchi
- e Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax , Tunisia
| | - Kamel Jammoussi
- e Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax , Tunisia
| | - Christian Magné
- d EA 2219 Géoarchitecture, University of Western Brittany, UFR Sciences & Techniques , Brest , France
| | - Tahia Boudawara
- f Anatomopathology Laboratory, Habib Bourguiba Hospital, University of Sfax , Tunisia , and
| | - Samia Ellouz Chaabouni
- c Enzymes and Bioconversions Laboratory, National Engineering School, University of Sfax , Tunisia
| | - Khaled Mounir Zeghal
- a Faculty of Medicine , Laboratory of Pharmacology, University of Sfax , Tunisia
| | - Ahmed Hakim
- a Faculty of Medicine , Laboratory of Pharmacology, University of Sfax , Tunisia
| | | |
Collapse
|
5
|
Maternal PPARG Pro12Ala polymorphism is associated with infant's neurodevelopmental outcomes at 18 months of age. Early Hum Dev 2015; 91:457-62. [PMID: 26025336 DOI: 10.1016/j.earlhumdev.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Peroxisome proliferator activated receptors (PPARs) are ligand activated transcription factors with crucial functions in lipid homeostasis, glucose metabolism, anti-inflammatory processes, placental development, and are involved in cognitive functions and neurodegenerative diseases. Polymorphisms in PPAR genes are shown to influence the activity of these receptors. AIMS 1) To examine the association of PPARG Pro12Ala polymorphism in pregnant women and their offspring on infant's neurodevelopmental outcomes during the first 18 months of life; 2) to determine the influence of Pro12Ala polymorphism on fatty acid concentrations in plasma phospholipids and placental tissue. STUDY DESIGN 138 mother-infant pairs from the PREOBE observational study were genotyped for PPARG Pro12Ala. Plasma phospholipids and placental fatty acid concentrations were measured at delivery. Infants' neuropsychological assessment at 6 and 18 months of age was performed using Bayley III. RESULTS The effect of Pro12Ala on infant's neurodevelopmental outcomes was detected at 18 months, but not at 6 months of age. 18 months old infants born to mothers with wild-type Pro12 genotype had better cognitive (OR=5.11, 95% CI: 1.379-18.96, p=0.015), language (OR=3.41, 95% CI: 1.35-11.24, p=0.044), and motor development scores (OR=4.77, 95% CI: 1.243-18.33, p=0.023) than the Ala allele carriers. Pro12Ala variants did not seem to affect fatty acids concentrations in blood nor in placenta at delivery. CONCLUSIONS Infants born to mothers with Pro12 genotype have better neurodevelopmental outcomes at 18 months of age than Ala allele carriers, indicating a long-term transplacental action of PPARγ variants on foetal brain development.
Collapse
|
6
|
Khan MZ, He L. The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology 2015; 113:639-651. [PMID: 26005184 DOI: 10.1016/j.neuropharm.2015.05.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 01/15/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are found in abundance in the nervous system. They perform significant functions for example boosting synaptogenesis, neurogenesis, inducing antinociception, stimulating gene expression and neuronal activity, preventing apoptosis and neuroinflammation. G-protein-coupled receptor 40 (GPR40), also called free fatty acid receptor 1 (FFA1), is ubiquitously expressed in various regions of the human brain including the olfactory bulb, midbrain, medulla oblongata, hippocampus, hypothalamus, cerebral cortex, cerebellum and in the spinal cord. GPR40, when binding with polyunsaturated fatty acids (PUFAs) has shown promising therapeutic potential. This review presents current knowledge regarding the pharmacological properties of GPR40 and addresses its functions in brain, with a focus on neurodevelopment & neurogenesis. Furthermore, the demonstration of GPR40 involvement in several neuropathological conditions such as apoptosis, inflammatory pain, Alzheimer's disease and Parkinson's disease. Although the results are encouraging, further research is needed to clarify their role in the treatment of inflammatory pain, Alzheimer's disease and Parkinson's disease. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Gelé P, Vingtdeux V, Potey C, Drobecq H, Ghestem A, Melnyk P, Buée L, Sergeant N, Bordet R. Recovery of brain biomarkers following peroxisome proliferator-activated receptor agonist neuroprotective treatment before ischemic stroke. Proteome Sci 2014; 12:24. [PMID: 24944524 PMCID: PMC4061923 DOI: 10.1186/1477-5956-12-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/01/2014] [Indexed: 01/08/2023] Open
Abstract
Background Lipid lowering agent such as agonists of peroxisome proliferator-activated receptors (PPAR) are suggested as neuroprotective agents and may protect from the sequelae of brain ischemic stroke. Although the demonstration is not clearly established in human, the underlying molecular mechanism may be of interest for future therapeutic purposes. To this end, we have used our well established rodent model of ischemia-reperfusion pre-treated or not with fenofibrate or atorvastatin and performed a differential proteomics analyses of the brain and analysed the protein markers which levels returned to “normal” following pre-treatments with PPARα agonists. Results In order to identify potential therapeutic targets positively modulated by pre-treatment with the PPARα agonists, two-dimensional gel electrophoresis proteome profiles between control, ischemia-reperfusion and pre-treated or not, were compared. The polypeptide which expression was altered following ischemia – reperfusion but whose levels remain unchanged after pre-treatment were characterized by mass spectrometry and further investigated by Western-blotting and immunohistochemistry. A series of 28 polypeptides were characterized among which the protein disulfide isomerase reduction – a protein instrumental to the unfolded protein response system - was shown to be reduced following PPARα agonists treatment while it was strongly increased in ischemia-reperfusion. Conclusions Pre-treatment with PPARα agonist or atorvastatin show potential neuroprotective effects by inhibiting the PDI overexpression in conjunction with the preservation of other neuronal markers, several of which are associated with the regulation of protein homeostasis, signal transduction and maintenance of synaptic plasticity. This proteomic study therefore suggests that neuroprotective effect of PPARα agonists supposes the preservation of the expression of several proteins essential for the maintenance of protein homeostasis not necessarily directly linked to PPARα known-regulated targets.
Collapse
Affiliation(s)
- Patrick Gelé
- Clinical Investigation center, IMPRT, University of Lille II, Cardiologic Hospital, Lille, France ; Inserm UMR 837, JPARC, Place de Verdun, Lille 59045, France ; PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France ; EA1046 - Department de Pharmacology - University of Lille 2, University Hospital Centre Place de Verdun, Lille, France
| | - Valérie Vingtdeux
- Inserm UMR 837, JPARC, Place de Verdun, Lille 59045, France ; PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France
| | - Camille Potey
- EA1046 - Department de Pharmacology - University of Lille 2, University Hospital Centre Place de Verdun, Lille, France
| | - Hervé Drobecq
- PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France ; UMR 8161 CNRS, Biomolecules and Micro-nanotechnologies laboratory - University of Lille 2 - University of Lille 1 - Pasteur Institute of Lille, Lille, France
| | | | - Patricia Melnyk
- PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France ; UMR 8161 CNRS, Biomolecules and Micro-nanotechnologies laboratory - University of Lille 2 - University of Lille 1 - Pasteur Institute of Lille, Lille, France
| | - Luc Buée
- Inserm UMR 837, JPARC, Place de Verdun, Lille 59045, France ; PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France
| | - Nicolas Sergeant
- Inserm UMR 837, JPARC, Place de Verdun, Lille 59045, France ; PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France
| | - Régis Bordet
- EA1046 - Department de Pharmacology - University of Lille 2, University Hospital Centre Place de Verdun, Lille, France
| |
Collapse
|
8
|
Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, Li TA, Ebrahimi M. Omega 3 polyunsaturated fatty acid improves spatial learning and hippocampal peroxisome proliferator activated receptors (PPARα and PPARγ) gene expression in rats. BMC Neurosci 2012; 13:109. [PMID: 22989138 PMCID: PMC3465241 DOI: 10.1186/1471-2202-13-109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 09/14/2012] [Indexed: 12/18/2022] Open
Abstract
Background This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague–Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR. Results Decreasing dietary n-6: n-3 PUFA ratios improved the cognitive performance of animals in the Morris water maze test along with the upregulation of PPARα and PPARγ gene expression. The animals with the lowest dietary n-6: n-3 PUFA ratio presented the highest spatial learning improvement and PPAR gene expression. Conclusion It can be concluded that modulation of n-6: n-3 PUFA ratios in the diet may lead to increased hippocampal PPAR gene expression and consequently improved spatial learning and memory in rats.
Collapse
Affiliation(s)
- Toktam Hajjar
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
PPAR Regulation of Inflammatory Signaling in CNS Diseases. PPAR Res 2011; 2008:658520. [PMID: 18670616 PMCID: PMC2490815 DOI: 10.1155/2008/658520] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 04/22/2008] [Accepted: 05/12/2008] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) is an immune privileged site, nevertheless inflammation associates with many CNS diseases. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that regulate immune and inflammatory responses. Specific ligands for PPARα, γ, and δ isoforms have proven effective in the animal models of multiple sclerosis (MS), Alzheimer's disease, Parkinson's disease, and trauma/stroke, suggesting their use in the treatment of neuroinflammatory diseases. The activation of NF-κB and Jak-Stat signaling pathways and secretion of inflammatory cytokines are critical in the pathogenesis of CNS diseases. Interestingly, PPAR agonists mitigate CNS disease by modulating inflammatory signaling network in immune cells. In this manuscript, we review the current knowledge on how PPARs regulate neuroinflammatory signaling networks in CNS diseases.
Collapse
|
10
|
Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:529-39. [PMID: 20369229 DOI: 10.1007/s00210-010-0511-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 03/06/2010] [Indexed: 12/24/2022]
Abstract
The present study was undertaken to investigate the possible mechanism of curcumin-mediated beneficial effects in memory deficits associated with experimental dementia. Dementia was induced in Swiss albino mice by administering streptozotocin (3 mg kg(-1)) intracerebroventricularly on first and third day. Morris water maze test was employed to assess learning and memory of the animals. Biochemical analysis of brain homogenate was performed to assess brain acetyl cholinesterase (AChE) activity and total oxidative stress. Streptozotocin (STZ) produced a significant decrease in water maze performance of mice indicative of impairment in spatial reference memory. Curcumin (20 mg/kg p.o. daily for 14 days) successfully attenuated STZ-induced memory deficits. Higher levels of brain AChE activity and oxidative stress were observed in STZ-treated animals, which were significantly attenuated by curcumin. Furthermore, the noted beneficial effect of curcumin on STZ-induced dementia was significantly abolished by pretreatment with PPAR-gamma receptor antagonist bisphenol-A-diglycidyl ether, i.e., BADGE (30 mg/kg intraperitoneally (i.p.)). It may be concluded that the beneficial effects of curcumin are mediated through the activation of PPAR-gamma receptors.
Collapse
|
11
|
Kaput J, Perlina A, Hatipoglu B, Bartholomew A, Nikolsky Y. Nutrigenomics: concepts and applications to pharmacogenomics and clinical medicine. Pharmacogenomics 2007; 8:369-90. [PMID: 17391074 DOI: 10.2217/14622416.8.4.369] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The maintenance of health and the prevention and treatment of chronic diseases are influenced by naturally occurring chemicals in foods. In addition to supplying the substrates for producing energy, a large number of dietary chemicals are bioactive--that is, they alter the regulation of biological processes and, either directly or indirectly, the expression of genetic information. Nutrients and bioactives may produce different physiological phenotypes among individuals because of genetic variability and not only alter health, but also disease initiation, progression and severity. The study and application of gene-nutrient interactions is called nutritional genomics or nutrigenomics. Nutrigenomic concepts, research strategies and clinical implementation are similar to and overlap those of pharmacogenomics, and both are fundamental to the treatment of disease and maintenance of optimal health.
Collapse
Affiliation(s)
- Jim Kaput
- Department of Surgery, University of Illinois Chicago, 909 South Wolcott Street MC 958, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
12
|
Wang G, Gong Y, Anderson J, Sun D, Minuk G, Roberts MS, Burczynski FJ. Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 2005; 42:871-9. [PMID: 16175609 DOI: 10.1002/hep.20857] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver fatty acid binding protein (L-FABP) contains amino acids that are known to possess antioxidant function. In this study, we tested the hypothesis that L-FABP may serve as an effective endogenous cytoprotectant against oxidative stress. Chang liver cells were selected as the experimental model because of their undetectable L-FABP mRNA level. Full-length L-FABP cDNA was subcloned into the mammalian expression vector pcDNA3.1 (pcDNA-FABP). Chang cells were stably transfected with pc-DNA-FABP or vector (pcDNA3.1) alone. Oxidative stress was induced by incubating cells with 400 micromol/L H2O2 or by subjecting cells to hypoxia/reoxygenation. Total cellular reactive oxygen species (ROS) was determined using the fluorescent probe DCF. Cellular damage induced by hypoxia/reoxygenation was assayed by lactate dehydrogenase (LDH) release. Expression of L-FABP was documented by regular reverse transcription polymerase chain reaction (RT-PCR), real-time RT-PCR, and Western blot. The pcDNA-FABP-transfected cells expressed full-length L-FABP mRNA, which was absent from vector-transfected control cells. Western blot showed expression of 14-kd L-FABP protein in pcDNA-FABP-transfected cells, but not in vector-transfected cells. Transfected cells showed decreased DCF fluorescence intensity under oxidative stress (H2O2 and hypoxia/reoxygenation) conditions versus control in inverse proportion to the level of L-FABP expression. Lower LDH release was observed in the higher L-FABP-expressed cells in hypoxia/reoxygenation experiments. In conclusion, we successfully transfected and cloned a Chang liver cell line that expressed the L-FABP gene. The L-FABP-expressing cell line had a reduced intracellular ROS level versus control. This finding implies that L-FABP has a significant role in oxidative stress.
Collapse
Affiliation(s)
- Guqi Wang
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|