1
|
Bochantin-Winders KA, Slavick KR, Jurgens IM, Hurlbert JL, Menezes ACB, Kirsch JD, Borowicz PP, Schauer CS, Dahlen CR. Influence of sire plane of nutrition and targeted body weight gain on ewe lamb growth, glucose metabolism, and ovarian reserve. J Anim Sci 2024; 102:skae301. [PMID: 39367596 PMCID: PMC11600961 DOI: 10.1093/jas/skae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Rambouillet rams were managed on either a positive (POS; gain 12% body weight [BW]; n = 8), maintenance (MAINT; maintain BW; n = 8), or negative (NEG; lose 12% BW; n = 8) plane of nutrition before breeding. Rams were bred to ewes (n = 10 per ram) that were managed similarly throughout gestation, and lambs were fed a common diet postnatally. Two ewe lambs (7.6 ± 0.02 mo of age, BW = 47.1 ± 1.17 kg) from each sire were selected and within-pair, randomly assigned to be managed for a moderate (MOD, 0.11 kg/d; n = 23) or accelerated (ACC, 0.20 kg/d; n = 22) rate of gain for 56 d. Ewe lamb BW was recorded on a weekly basis and blood was collected on days 0, 28, and 56 for analysis of insulin-like growth factor 1 (IGF-1), triiodothyronine (T3), thyroxine (T4), glucose, blood urea nitrogen (BUN), and non-esterified fatty acids (NEFA). Intravenous glucose tolerance tests (IVGTT) were conducted from days -7 to -4 and days 57 to 64. A unilateral ovariectomy was performed and ovarian follicles were staged and counted macro and microscopically. Sire treatment × day and ewe treatment × day interactions were present for BW (P ≤ 0.05), where POS had slower growth than MAINT and NEG, and tended (P = 0.10) to have reduced average daily gain (ADG) when managed at an accelerated rate of gain. By design, ACC had greater BW and ADG than MOD (P < 0.05). Concentrations of IGF-1 and T4 were greater in ACC than MOD (P ≤ 0.05), and NEG tended to have greater concentrations of IGF-1 than POS and MAINT (P = 0.08). At the first IVGTT, the concentration of insulin was influenced by a sire treatment × time interaction (P ≤ 0.05), suggesting impaired secretion in NEG-sires ewes, but no differences in area under the curve (AUC) for glucose, insulin, or their ratio (P ≥ 0.11). No interactive effects of sire and ewe treatment (P ≥ 0.52) were observed at the second IVGTT, but insulin and insulin:glucose ratio were influenced by sire treatment × time (P ≤ 0.02), as NEG had greater insulin concentration at 60 min than MAINT (P = 0.03) and greater AUC than POS and MAINT (P ≤ 0.04). No differences in ovary size, weight, or total counts of macro and microscopic follicles were observed (P ≥ 0.23). Ewes-fed ACC had a greater number of small surface follicles (P = 0.02), whereas MOD tended to have a greater number of large surface follicles and tertiary follicles (P < 0.06). These findings suggest that the paternal plane of nutrition influences female offspring physiology, particularly at varying growth rates.
Collapse
Affiliation(s)
- Kerri A Bochantin-Winders
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Kathryn R Slavick
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Isabella M Jurgens
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Jennifer L Hurlbert
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Ana Clara B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - James D Kirsch
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Pawel P Borowicz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND 58639, USA
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
2
|
Amorín R, Liu L, Moriel P, DiLorenzo N, Lancaster PA, Peñagaricano F. Maternal diet induces persistent DNA methylation changes in the muscle of beef calves. Sci Rep 2023; 13:1587. [PMID: 36709351 PMCID: PMC9884291 DOI: 10.1038/s41598-023-28896-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/27/2023] [Indexed: 01/29/2023] Open
Abstract
Maternal nutrition during pregnancy can induce epigenetic alterations in the fetal genome, such as changes in DNA methylation. It remains unclear whether these epigenetic alterations due to changes in maternal nutrition are transitory or persist over time. Here, we hypothesized that maternal methionine supplementation during preconception and early pregnancy could alter the fetal epigenome, and some of these alterations could persist throughout different developmental stages of the offspring. Beef cows were randomly assigned to either a control or a methionine-rich diet from - 30 to + 90 d, relative to the beginning of the breeding season. The methylome of loin muscle from the same bull calves (n = 10 per maternal diet) at 30 and 200 days of age were evaluated using whole-genome bisulfite sequencing. Notably, a total of 28,310 cytosines showed persistent methylation differences over time between maternal diets (q-value < 0.10, methylation change > 20%). These differentially methylated cytosines were in the transcription start sites, exons, or splice sites of 341 annotated genes. Over-representation analysis revealed that these differentially methylated genes are involved in muscle contraction, DNA and histone methylation, mitochondrial function, reactive oxygen species homeostasis, autophagy, and PI3K signaling pathway, among other functions. In addition, some of the persistently, differentially methylated cytosines were found in CpG islands upstream of genes implicated in mitochondrial activities and immune response. Overall, our study provides evidence that a maternal methionine-rich diet altered fetal epigenome, and some of these epigenetic changes persisted over time.
Collapse
Affiliation(s)
- Rocío Amorín
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Lihe Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, FL, 33865, USA
| | - Nicolás DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL, 32351, USA
| | - Phillip A Lancaster
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Natural Ghee Enhances the Biochemical and Immunohistochemical Reproductive Performance of Female Rabbits. Life (Basel) 2022; 13:life13010080. [PMID: 36676029 PMCID: PMC9861198 DOI: 10.3390/life13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
The reproductive effects of several dietary fats (margarine, ghee, and olive oil) on female rabbits were studied. For that purpose, 40 mature female rabbits were designed into four groups of ten rabbits each. Group I was given a control diet, Group II received 10% margarine, Group III received 10% ghee, and Group IV received 10% olive oil; after two months, all rabbits were sacrificed. Lipid profile and reproductive hormones levels were assayed in serum besides ovarian antioxidant enzyme and lipid peroxidation. Furthermore, ovarian tissue was examined using hematoxylin−eosin staining and immunohistochemistry of estrogen, follicle-stimulating hormone (FSH), luteinizing hormone (LH) receptor, and caspase 3. Our data revealed that the margarine significantly (p < 0.05) increased lipid profile and malondialdehyde (MDA) level, which decreased in olive oil and ghee compared to the control. In addition, serum FSH and estrogen (estradiol (E2)) were significantly (p < 0.05) decreased in the group treated with margarine. Furthermore, there was a significant decrease in ovarian superoxide dismutase (SOD) and catalase activity in the margarine-treated group. In contrast, SOD and MDA showed a significant (p > 0.05) increase in the olive oil and ghee- treated group compared to the control group. At the same time, there was a significant increase in serum FSH and (estradiol (E2)) in the ghee and olive oil groups, respectively, compared to the control. The margarine feed group showed moderate immunoreaction of estrogen, FSH, LH receptor, and strong caspase 3, while ghee and olive oil showed strong immunoreaction of estrogen, FSH, LH receptor, and mild immunoreaction of caspase 3 in ovarian tissue. Photomicrograph of rabbit ovarian tissue showed vacuolation in small and growing follicles in the margarine group but appeared normal in ghee and the olive oil-treated group. In conclusion, based on these results, olive oil and ghee have a strong capability of enhancing lipid profile, antioxidant status, and female hormonal functions.
Collapse
|
4
|
Macías-Cruz U, Vicente-Pérez R, Correa-Calderon A, Mellado M, Meza-Herrera CA, Arechiga CF, Avendaño-Reyes L. n-6 Polyunsaturated fatty acids in the feeding of late gestation hair ewes: the effects on thermoregulation, growth, and metabolism of heat-stressed growing lambs. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:2077-2086. [PMID: 34226974 DOI: 10.1007/s00484-021-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The objective was to determine the effects of feeding soybean oil (SBO), an ingredient rich in n-6 polyunsaturated fatty acids (PUFA), to late gestation hair ewes on physiological responses, feedlot performance, and serum metabolite and electrolyte concentrations of their growing ewe lambs under outdoor heat stress conditions. Twenty-four Dorper × Pelibuey ewe lambs weaned (body weight = 21.5 ± 0.2 kg, age= 2 months, and multiple birth) born from ewes fed 0, 30, or 60 mg of SBO/kg dry matter (DM) during late gestation were selected (n = 8/treatment) to conduct a 30-day feeding trial during the summer season of a desert region (temperature = 34 °C and temperature-humidity index = 35 units). While rectal temperature was unaffected in any daytime, respiratory rate in the afternoon quadratically increased (P = 0.05) as the SBO levels increased from 0 to 60 mg/kg DM in the maternal diet. Final weight, average daily gain, and feed efficiency linearly increased (P = 0.04) with increasing levels of SBO. Body surface temperatures and serum concentration of glucose, cholesterol, triglyceride, total protein, urea, sodium, potassium, and chlorine did not vary by the SBO inclusion in the maternal diet. In conclusion, feeding late gestation hair ewes with source rich in n-6 PUFA appears to be an effective maternal nutritional strategy to improve post-weaning growth without compromising the thermoregulatory ability of their growing offspring under a heat stress environment.
Collapse
Affiliation(s)
- Ulises Macías-Cruz
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, Baja California, 21705, México
| | - Ricardo Vicente-Pérez
- Departamento de Producción Agrícola CUCSUR, Universidad de Guadalajara, Autlán de Navarro, Jalisco, 48900, México
| | - Abelardo Correa-Calderon
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, Baja California, 21705, México
| | - Miguel Mellado
- Departamento de Nutrición Animal, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, 25315, México
| | - Cesar A Meza-Herrera
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Bermejillo, Durango, 35230, México
| | - Carlos F Arechiga
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Calera, Zacatecas, 98500, México
| | - Leonel Avendaño-Reyes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, Baja California, 21705, México.
| |
Collapse
|
5
|
Abuelo A. Symposium review: Late-gestation maternal factors affecting the health and development of dairy calves. J Dairy Sci 2020; 103:3882-3893. [PMID: 32037167 DOI: 10.3168/jds.2019-17278] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Efficient production of heifers is fundamental to the productivity and sustainability of dairy farms. However, high preweaning morbidity and mortality rates are frequently reported worldwide, imposing substantial welfare and economic implications. A major contributing factor to disease susceptibility in the neonatal stage is the inability of calves to mount an effective immune response. Appreciation is now greater that exposure in utero to several stresses (nutritional, social, metabolic, and so on) during the last stages of pregnancy have downstream carryover effects in calves' health, growth, and development. Suboptimal intrauterine conditions during critical periods of development lead to changes in tissue structure and function that may have long-term consequences on the offspring's physiology and disease susceptibility. Indeed, preweaning metabolic function and growth are associated with future milk production. Thus, late-gestation carryover effects span into the lactating stage of the heifers. Nevertheless, researchers have been studying how to minimize these effects. This review will discuss the effects of maternal stress during late gestation on the offspring's growth, productivity, metabolism, and health. In addition, strategies focusing on maternal interventions that improve neonatal health will be discussed. A better understanding of the intrauterine conditions affecting calf health and growth may facilitate the design of management practices that could improve neonatal development and future cow productivity.
Collapse
Affiliation(s)
- Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Rd., East Lansing 48824.
| |
Collapse
|
6
|
Abstract
The concept of developmental programming was established using epidemiologic studies that investigated chronic illnesses in humans, such as coronary heart disease and hypertension. In livestock species, the impacts of developmental programming are important for production and welfare reasons and are used as research models for human and other animal species. Dams should be in adequate nutritional status to ensure optimal nutrient supply for fetal growth, including development of their immune system. Beef and dairy cows with insufficient nutrient intake during gestation produce calves with reduced immunity against diseases, such as scours, respiratory disease, and mastitis.
Collapse
Affiliation(s)
- Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
7
|
Macías-Cruz U, Mejía-Vázquez A, Vicente-Pérez R, Correa-Calderón A, Robinson P, Mellado M, Meza-Herrera C, Guerra-Liera J, Avendaño-Reyes L. Effects of soybean oil inclusion in the pre-lambing diet on udder size, colostrum secretion, and offspring thermoregulation and growth in hair-breed ewes. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Peñagaricano F, Wang X, Rosa GJ, Radunz AE, Khatib H. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genomics 2014; 15:1034. [PMID: 25429728 PMCID: PMC4301459 DOI: 10.1186/1471-2164-15-1034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/19/2014] [Indexed: 01/15/2023] Open
Abstract
Background Maternal nutrition during different stages of pregnancy can induce significant changes in the structure, physiology, and metabolism of the offspring. These changes could have important implications on food animal production especially if these perturbations impact muscle and adipose tissue development. Here, we evaluated the impact of different maternal isoenergetic diets, alfalfa haylage (HY; fiber), corn (CN; starch), and dried corn distillers grains (DG; fiber plus protein plus fat), on the transcriptome of fetal muscle and adipose tissues in sheep. Results Prepartum diets were associated with notable gene expression changes in fetal tissues. In longissimus dorsi muscle, a total of 224 and 823 genes showed differential expression (FDR ≤0.05) in fetuses derived from DG vs. CN and HY vs. CN maternal diets, respectively. Several of these significant genes affected myogenesis and muscle differentiation. In subcutaneous and perirenal adipose tissues, 745 and 208 genes were differentially expressed (FDR ≤0.05), respectively, between CN and DG diets. Many of these genes are involved in adipogenesis, lipogenesis, and adipose tissue development. Pathway analysis revealed that several GO terms and KEGG pathways were enriched (FDR ≤0.05) with differentially expressed genes associated with tissue and organ development, chromatin biology, and different metabolic processes. Conclusions These findings provide evidence that maternal nutrition during pregnancy can alter the programming of fetal muscle and fat tissues in sheep. The ramifications of the observed gene expression changes, in terms of postnatal growth, body composition, and meat quality of the offspring, warrant future investigation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1034) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco Peñagaricano
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
9
|
McCoard S, Sales F, Wards N, Sciascia Q, Oliver M, Koolaard J, van der Linden D. Parenteral administration of twin-bearing ewes with L-arginine enhances the birth weight and brown fat stores in sheep. SPRINGERPLUS 2013; 2:684. [PMID: 24422179 PMCID: PMC3888493 DOI: 10.1186/2193-1801-2-684] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022]
Abstract
The objective of this study was to evaluate the effects of parenteral administration of L-arginine (Arg) to well-fed twin-bearing ewes from day (d) 100 of pregnancy to birth on fetal growth, body composition and neonatal behavior. Ewes received an i.v. bolus of either 345 μmol Arg-HCl/kg bodyweight or saline solution (control) 3 times a day. At d 140 of pregnancy, Arg-supplemented and control ewes were euthanized and fetal weight and fetal organ weight recorded, and maternal and fetal plasma concentrations of amino acids, hormones and metabolites analyzed. A subset of ewes was allowed to lamb and birth weight, body dimensions and behavior of the lambs in the first 2 hours(h) following birth recorded and blood samples collected. At d 140 of pregnancy, fetal weight internal organ weights were unaffected by treatment with the exception of brown fat stores which were increased by 16% in fetuses from Arg-supplemented ewes relative to controls (P < 0.05). At birth, there was an interaction (P = 0.06) between treatment and sex for birth weight of the lamb. The ewe lambs from Arg-supplemented ewes were 12% (P < 0.05) heavier at birth compared with controls whereas birth weight of male lambs did not differ. These results indicate that maternal Arg supplementation enhanced brown fat stores in the fetus and countered some effect of fetal growth restriction due to litter size in female lambs. Increasing birth weight of female lambs and enhancing brown fat stores of all lambs may have important implications for lamb survival and postnatal growth.
Collapse
Affiliation(s)
- Sue McCoard
- AgResearch Grasslands, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Francisco Sales
- AgResearch Grasslands, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Nina Wards
- AgResearch Grasslands, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Quentin Sciascia
- AgResearch Grasslands, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Mark Oliver
- Ngapouri Research Farm, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - John Koolaard
- AgResearch Grasslands, Private Bag 11008, Palmerston North, 4442 New Zealand
| | | |
Collapse
|
10
|
Gulliver C, Friend M, King B, Clayton E. The role of omega-3 polyunsaturated fatty acids in reproduction of sheep and cattle. Anim Reprod Sci 2012; 131:9-22. [DOI: 10.1016/j.anireprosci.2012.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 10/14/2022]
|
11
|
Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 2011; 45:489-99. [PMID: 22130738 DOI: 10.1007/s00726-011-1168-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/18/2011] [Indexed: 01/21/2023]
Abstract
Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and L-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or L-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal L-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that L-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.
Collapse
Affiliation(s)
- M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
12
|
Keithly JI, Kott RW, Berardinelli JG, Moreaux S, Hatfield PG. Thermogenesis, blood metabolites and hormones, and growth of lambs born to ewes supplemented with algae-derived docosahexaenoic acid. J Anim Sci 2011; 89:4305-13. [PMID: 21742943 DOI: 10.2527/jas.2010-3391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neonatal lamb mortality is a major factor affecting profitability in the sheep industry, and lamb thermogenesis is a key element in neonatal lamb survival. Increased lamb vigor has been reported when ewes were supplemented during late gestation with algae-derived docosahexaenoic acid (DHA); however, the effects of DHA on lamb thermogenesis and immunocompetence have not been investigated. Eighty twin-bearing Targhee ewes (ages 2 to 5 yr; 68.5 ± 3 kg) were assigned randomly to 1 of 2 supplement treatments to determine the effects of feeding DHA to ewes during late gestation and early lactation on lamb thermogenesis, serum metabolites and hormones, and lamb growth. Supplement treatments were 12 g·ewe(-1)·d(-1) of algae-derived DHA (DHA Gold Advanced Bionutrition Corp., Columbia, MD; algae-derived DHA); and no algae-derived DHA (control). Supplements were individually fed daily during the last 30 d (±7 d) of gestation and pen fed (6 pens/treatment with 6 or 7 ewes/pen) during the first 38 d (±7 d) of lactation. One hour after lambing and before nursing, twin-born lambs were weighed, blood sampled via jugular puncture, and placed in a dry cold chamber for 30 min (0°C), and rectal temperatures were recorded every minute for 30 min. Lambs were removed from the cold chamber, blood sampled, warmed for 15 min, and returned to their dam. Ewes were blood sampled, and colostrum samples were collected 1 h postpartum. Ewe and lamb sera were assayed for glucose, NEFA, cortisol, and leptin. Lamb rectal temperature, glucose, NEFA, cortisol, leptin, and birth weights did not differ between treatments. The BW at 38 d was greater (P = 0.03) for lambs born to control ewes than for lambs born to algae-derived DHA-supplemented ewes; however, the colostrum of algae-derived DHA-supplemented ewes had a greater specific gravity (P = 0.05) than for control ewes. Overall, despite a potentially positive effect on ewe colostral IgG concentrations, supplementation of algae-derived DHA during late gestation and early lactation had a negative effect on lamb BW and did not affect indices of lamb thermogenesis.
Collapse
Affiliation(s)
- J I Keithly
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
13
|
Radunz AE, Fluharty FL, Zerby HN, Loerch SC. Winter-feeding systems for gestating sheep I. Effects on pre- and postpartum ewe performance and lamb progeny preweaning performance1. J Anim Sci 2011; 89:467-77. [DOI: 10.2527/jas.2010-3035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Dafoe JM, Kott RW, Sowell BF, Berardinelli JG, Davis KC, Hatfield PG. Effects of supplemental safflower and vitamin E during late gestation on lamb growth, serum metabolites, and thermogenesis1. J Anim Sci 2008; 86:3194-202. [DOI: 10.2527/jas.2007-0633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Hess BW, Moss GE, Rule DC. A decade of developments in the area of fat supplementation research with beef cattle and sheep1. J Anim Sci 2008; 86:E188-204. [DOI: 10.2527/jas.2007-0546] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|