1
|
Zhou X, Yan Q, Yang H, Ren A, Kong Z, Tang S, Han X, He Z, Bamikole MA, Tan Z. Effects of Maternal Undernutrition during Mid-Gestation on the Yield, Quality and Composition of Kid Meat Under an Extensive Management System. Animals (Basel) 2019; 9:ani9040173. [PMID: 30999616 PMCID: PMC6523803 DOI: 10.3390/ani9040173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/23/2019] [Accepted: 04/16/2019] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Nutrition status during pregnancy affects the meat production of offspring. In ruminants, the nutrient supply during the first and third periods of gestation is generally stressed, whereas the nutrition level during the second period of gestation is given less attention, in particular under the extensive husbandry system. This study focused on the effects of a 40% maternal undernutrition during mid-gestation, on the yield, quality, and composition of kid meat under an extensive system. The meat yield of the kids was decreased, while the meat quality and chemical composition, including the amino acid and fatty acid profiles, were unaffected. In meat production under an extensive husbandry system, the importance of the nutrient supply during mid-gestation in ruminants should be stressed. Abstract Nutritional status during mid-gestation is often ignored under extensive husbandry. This study aimed to examine the effect of maternal undernutrition during mid-gestation on kid meat production under an extensive system. Twenty-seven goats (45 ± 3 d of gestation) were randomly assigned to an unrestricted group (100% of nutrient requirements), or a restricted group (60% of nutrient requirements from 45 to 100 d of gestation, and then re-alimented to 100%). Among the offspring, 16 eligible kids (eight per treatment) were selected, based on birth type and survival, and were harvested to evaluate the meat yield, quality, and composition at 90 d after birth. Maternal undernutrition reduced the body weight and size, average daily gain and hot carcass weight of the kids (p < 0.05). The lightness of the meat at 45 min postmortem was increased (p = 0.029) in the restricted kids. Apart from an increase in tyrosine concentration (p = 0.046), the proximate composition and the amino acid and fatty acid profiles were unaffected in the restricted kids (p > 0.05). Overall, maternal undernutrition during mid-gestation decreased the yield of kid meat, but did not significantly modify the quality and composition. These results highlight the importance of nutrient status during mid-gestation in the meat production of small ruminants under an extensive regime.
Collapse
Affiliation(s)
- Xiaoling Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.
- University of The Chinese Academy of Science, Beijing 100049, China.
- College of Animal Science, Tarim University, Alaer 843300, China.
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Hong Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.
- University of The Chinese Academy of Science, Beijing 100049, China.
| | - Ao Ren
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Zhiwei Kong
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.
- University of The Chinese Academy of Science, Beijing 100049, China.
| | - Shaoxun Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| | - Xuefeng Han
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| | - Musibau Adungbe Bamikole
- Department of Animal Science Faculty of Agriculture, University of Benin, Benin P.M.B.1154, Nigeria.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| |
Collapse
|
2
|
Effects of breed, parity and post-mating nutrition on reproductive wastage and pregnancy outcomes of Egyptian sheep. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Giblin L, Darimont C, Leone P, McNamara LB, Blancher F, Berry D, Castañeda-Gutiérrez E, Lawlor PG. Offspring subcutaneous adipose markers are sensitive to the timing of maternal gestational weight gain. Reprod Biol Endocrinol 2015; 13:16. [PMID: 25879645 PMCID: PMC4363193 DOI: 10.1186/s12958-015-0009-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Excessive maternal weight gain during pregnancy impacts on offspring health. This study focused on the timing of maternal gestational weight gain, using a porcine model with mothers of normal pre-pregnancy weight. METHODS Trial design ensured the trajectory of maternal gestational weight gain differed across treatments in early, mid and late gestation. Diet composition did not differ. On day 25 gestation, sows were assigned to one of five treatments: Control sows received a standard gestation diet of 2.3 kg/day (30 MJ DE/day) from early to late gestation (day 25-110 gestation). E sows received 4.6 kg food/day in early gestation (day 25-50 gestation). M sows doubled their food intake in mid gestation (day 50-80 gestation). EM sows doubled their food intake during both early and mid gestation (day 25-80 gestation). L sows consumed 3.5 kg food/day in late gestation (day 80-110 gestation). Offspring body weight and food intake levels were measured from birth to adolescence. Markers of lipid metabolism, hypertrophy and inflammation were investigated in subcutaneous adipose tissue of adolescent offspring. RESULTS The trajectory of gestational weight gain differed across treatments. However total gestational weight gain did not differ except for EM sows who were the heaviest and fattest mothers at parturition. Offspring birth weight did not differ across treatments. Subcutaneous adipose tissue from EM offspring differed significantly from controls, with elevated mRNA levels of lipogenic (CD36, ACACB and LPL), nutrient transporters (FABP4 and GLUT4), lipolysis (HSL and ATGL), adipocyte size (MEST) and inflammation (PAI-1) indicators. The subcutaneous adipose depot from L offspring exhibited elevated levels of CD36, ACACB, LPL, GLUT4 and FABP4 mRNA transcripts compared to control offspring. CONCLUSIONS Increasing gestational weight gain in early gestation had the greatest impact on offspring postnatal growth rate. Increasing maternal food allowance in late gestation appeared to shift the offspring adipocyte focus towards accumulation of fat. Mothers who gained the most weight during gestation (EM mothers) gave birth to offspring whose subcutaneous adipose tissue, at adolescence, appeared hyperactive compared to controls. This study concluded that mothers, who gained more than the recommended weight gain in mid and late gestation, put their offspring adipose tissue at risk of dysfunction.
Collapse
Affiliation(s)
- Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co.Cork, Ireland.
| | - Christian Darimont
- Nestlé Research Centre, Nutrition & Health Research Department, Vers-Chez-les-Blanc, Lausanne, Switzerland.
| | - Patricia Leone
- Nestlé Research Centre, Nutrition & Health Research Department, Vers-Chez-les-Blanc, Lausanne, Switzerland.
| | - Louise B McNamara
- Teagasc Food Research Centre, Moorepark, Fermoy, Co.Cork, Ireland.
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.
| | - Florence Blancher
- Nestlé Research Centre, Nutrition & Health Research Department, Vers-Chez-les-Blanc, Lausanne, Switzerland.
| | - Donagh Berry
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.
| | | | - Peadar G Lawlor
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
4
|
Yunusova RD, Neville TL, Vonnahme KA, Hammer CJ, Reed JJ, Taylor JB, Redmer DA, Reynolds LP, Caton JS. Impacts of maternal selenium supply and nutritional plane on visceral tissues and intestinal biology in 180-day-old offspring in sheep1. J Anim Sci 2013; 91:2229-42. [DOI: 10.2527/jas.2012-5134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- R. D. Yunusova
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - T. L. Neville
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - K. A. Vonnahme
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - C. J. Hammer
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - J. J. Reed
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - J. B. Taylor
- ARS-USDA, U.S. Sheep Experiment Station, Dubois, ID 83423
| | - D. A. Redmer
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - L. P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - J. S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| |
Collapse
|
5
|
Abstract
Fat affects meat quality, value and production efficiency as well as providing energy reserves for pregnancy and lactation in farm livestock. Leptin, the adipocyte product of the obese (ob) gene, was quickly seen as a predictor of body fat content in animals approaching slaughter and an aid to assessing reproductive readiness in females. Its participation in inflammation and immune responses that help animals survive infection and trauma has clear additional relevance to meat and milk production. Furthermore, almost a decade of discoveries of nucleotide polymorphisms in the leptin and leptin receptor genes has suggested useful applications relating to feed intake regulation, the efficiency of feed use, the composition of growth, the timing of puberty, mammogenesis and mammary gland function and fertility in cattle, pigs and poultry. The current review attempts to summarise where research has taken us in each of these aspects and speculates on where future research might lead.
Collapse
|
6
|
Debus N, Chavatte-Palmer P, Viudes G, Camous S, Roséfort A, Hassoun P. Maternal periconceptional undernutrition in Merinos d'Arles sheep: 1. Effects on pregnancy and reproduction results of dams and offspring growth performances. Theriogenology 2012; 77:1453-65. [PMID: 22326588 DOI: 10.1016/j.theriogenology.2011.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/15/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
Abstract
Maternal undernutrition during gestation can condition offspring adult health, with the periconceptional period pointed out as a key period. The aim of this study was to evaluate the effects of maternal periconceptional undernutrition on pregnancy and offspring growth performance in sheep. 52 Merinos d'Arles ewes were fed to requirements (control group, C), whereas 64 ewes received 50% of their dietary needs from -15 to +30 days post-conception (restricted group, R). Thereafter, both groups were fed according to needs. Maternal body weight (BW), body condition score (BCS) and Non Esterified Fatty Acids (NEFA), progesterone, leptin and cortisol plasma concentrations were monitored weekly during the restriction period and the following month, then monthly until weaning. Lambs were weighed weekly until weaning at 22 kg BW, then monthly. Plasma leptin was monitored monthly in lambs. The BW, BCS, and leptin concentrations were significantly decreased, whereas NEFA and cortisol concentrations were increased in R dams. Maximum progesterone concentration was higher in R ewes that had a high (10-25%) vs. low (0-10%) BW loss during restriction (27.9 ± 2.59 vs. 20.8 ± 2.00 ng/mL, P < 0.05). Overall, gestation was significantly longer in the R group (151.0 ± 0.3 vs. 149.4 ± 0.4 days, P < 0.001). There was no difference between groups for pregnancy rates, prolificacy, birth weight and lamb mortality, but the proportion of male lambs was significantly higher in the R group, only for singletons (16/26 vs. 9/26, P < 0.05). Lamb growth was not significantly modified by treatment. Leptin concentrations at birth were significantly lower in R vs. C males (6.15 ± 0.13 ng/mL vs. 7.42 ± 0.36 ng/mL, P < 0.05), whereas in females, leptin concentrations were significantly higher in R vs. C lambs at 4 mo of age (7.31 ± 0.27 ng/mL vs. 6.41 ± 0.29 ng/mL, P < 0.05). These results indicate that maternal periconceptional undernutrition in a hardy breed does not significantly affect lamb birth weight and growth rates, in contrast to previous reports in other breeds, suggesting that caution must be taken when extrapolating programming data between breeds and breeding conditions.
Collapse
Affiliation(s)
- N Debus
- INRA, UMR868 Systèmes d'Elevage Méditerranéens et Tropicaux, SELMET, 2 place Viala, F-34060 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
7
|
Du M, Zhao JX, Yan X, Huang Y, Nicodemus LV, Yue W, McCormick RJ, Zhu MJ. Fetal muscle development, mesenchymal multipotent cell differentiation, and associated signaling pathways. J Anim Sci 2011; 89:583-90. [PMID: 20852073 PMCID: PMC4100697 DOI: 10.2527/jas.2010-3386] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enhancing muscle growth while reducing fat accumulation improves the efficiency of animal production. The fetal stage is crucial for skeletal muscle development. Fetal muscle development involves myogenesis, adipogenesis, and fibrogenesis from mesenchymal multipotent cells (MC), which are negatively affected by maternal nutrient deficiencies. Enhancing myogenesis increases the lean-to-fat ratio of animals, enhancing intramuscular adipogenesis increases intramuscular fat that is indispensible for the superior eating properties of meat because fat is the major contributor to meat flavor. The promotion of fibrogenesis leads to the accumulation of connective tissue, which contributes to the background toughness of meat and is undesirable. Thus, it is essential to regulate MC differentiation to enhance lean growth and improve meat quality. To date, our understanding of mechanisms regulating the lineage commitment of MC is limited. In this review, we first discuss the impact of maternal nutrient deficiency on fetal development, offspring body composition, and meat quality. Because maternal nutrition affects fetal muscle through altering MC differentiation, we then review several important extracellular morphogens regulating MC differentiation, including hedgehog, Wingless and Int (Wnt), and bone morphogenic proteins. Possible involvement of epigenetic modifications associated with histone deacetylases class IIa and histone acetyltransferase, p300, in MC differentiation is also discussed.
Collapse
Affiliation(s)
- M Du
- Developmental Biology Group, Department of Animal Science, University of Wyoming, Laramie 82071, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Neville TL, Caton JS, Hammer CJ, Reed JJ, Luther JS, Taylor JB, Redmer DA, Reynolds LP, Vonnahme KA. Ovine offspring growth and diet digestibility are influenced by maternal selenium supplementation and nutritional intake during pregnancy despite a common postnatal diet1. J Anim Sci 2010; 88:3645-56. [DOI: 10.2527/jas.2009-2666] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|