1
|
Chao X, Guo L, Hu M, Ye M, Fan Z, Luan K, Chen J, Zhang C, Liu M, Zhou B, Zhang X, Li Z, Luo Q. Abnormal DNA methylation of EBF1 regulates adipogenesis in chicken. BMC Genomics 2025; 26:275. [PMID: 40114082 PMCID: PMC11927125 DOI: 10.1186/s12864-025-11464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND DNA methylation influences gene expression and is involved in numerous biological processes, including fat production. It is involved in lipid generation in numerous animal species, including poultry. However, the effect of DNA methylation on adipogenesis in chickens remains unclear. RESULTS A total of 12 100-day-old chickens were divided into high and low-fat groups based on their abdominal fat ratios. Subsequently, genome-wide bisulfite sequencing (WGBS) was performed on their abdominal fat, and 1877 differentially methylated region (DMR) genes were identified, among which SLC45A3, EBF1, PLA2G15, and ACAD9 were associated with lipid metabolism. Interestingly, EBF1 showed a lower level of DNA methylation and higher mRNA expression in the low-fat group, as determined by comprehensive RNA-seq analysis. Cellular verification showed that EBF1 expression was upregulated by 5-azacytidine (5-Aza) and downregulated by betaine. EBF1 facilitated the differentiation of immortalized chicken preadipocyte 1 (ICP-1) through the PPAR-γ pathway, thereby affecting chicken adipogenesis. CONCLUSION A combination of WGBS and RNA-seq analyses revealed 48 DMGs in the abdominal fat tissue of chickens. Notably, the DNA methylation status of EBF1 was inversely related to its mRNA expression. Mechanistically, DNA methylation regulates EBF1 expression, which in turn mediates the differentiation of ICP-1 through the PPARγ pathway. This study provides a theoretical framework for investigating the effects of DNA methylation on adipogenesis in chickens.
Collapse
Affiliation(s)
- Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lijin Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Meiling Hu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Mao Ye
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Luan
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Manqing Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhenhui Li
- College of Animal Science, South China Agricultural University, Guangzhou, China.
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, China.
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
2
|
Xing Y, Ma C, Guan H, Shen J, Shen Y, Li G, Sun G, Tian Y, Kang X, Liu X, Li H, Tian W. Multi-Omics Insights into Regulatory Mechanisms Underlying Differential Deposition of Intramuscular and Abdominal Fat in Chickens. Biomolecules 2025; 15:134. [PMID: 39858528 PMCID: PMC11763713 DOI: 10.3390/biom15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Excessive abdominal fat deposition in chickens disadvantages feed conversion, meat production, and reproductive performance. Intramuscular fat contributes to meat texture, tenderness, and flavor, serving as a vital indicator of overall meat quality. Therefore, a comprehensive analysis of the regulatory mechanisms governing differential deposition of abdominal versus intramuscular fat is essential in breeding higher-quality chickens with ideal fat distribution. This review systematically summarizes the regulatory mechanisms underlying intramuscular and abdominal fat traits at chromatin, genomic, transcriptional, post-transcriptional, translational, and epigenetic-modification scales. Additionally, we summarize the role of non-coding RNAs and protein-coding genes in governing intramuscular and abdominal fat deposition. These insights provide a valuable theoretical foundation for the genetic engineering of high-quality and high-yielding chicken breeds.
Collapse
Affiliation(s)
- Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Jianing Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Ying Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| |
Collapse
|
3
|
Małodobra-Mazur M, Ołdakowska M, Dobosz T. Exploring PPAR Gamma and PPAR Alpha's Regulation Role in Metabolism via Epigenetics Mechanism. Biomolecules 2024; 14:1445. [PMID: 39595621 PMCID: PMC11591816 DOI: 10.3390/biom14111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear receptors. To date, three types of PPARs, namely PPARα, PPARδ, and PPARγ, have been identified, demonstrating co-expression across numerous tissues. PPARγ is primarily distributed in adipose tissue, the colon, the immune system, and the retina, while PPARα is predominantly expressed in metabolic tissues such as brown adipose tissue, the liver, and the kidneys. Both PPARγ and PPARα play crucial roles in various cellular processes. Recent data suggest that the PPAR family, among other mechanisms, might also be regulated by epigenetic mechanisms. Our recent studies, alongside numerous others, have highlighted the pivotal roles of DNA methylation and histone modifications in the regulation of PPARγ and PPARα, implicating them in the deterioration of metabolic disorders via epigenetic mechanisms. This still not fully understood mechanism of regulation in the nuclear receptors family has been summarized and described in the present paper. The present review summarizes the available data on PPARγ and PPARα regulation via epigenetic mechanisms, elucidating the link between the development of metabolic disorders and the dysregulation of PPARγ and PPARα resulting from these mechanisms.
Collapse
Affiliation(s)
- Małgorzata Małodobra-Mazur
- Department of Forensic Science, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 51-367 Wroclaw, Poland; (M.O.); (T.D.)
| | | | | |
Collapse
|
4
|
Cui TT, Huang JX, Ning BL, Mu F, Chen HY, Xing TY, Li H, Wang N. DNA methylation promotes the expression of PPARγ transcript 1 at least in part by preventing NRF1 binding to the promoter P1 of chicken PPARγ gene. Poult Sci 2024; 103:103559. [PMID: 38430780 PMCID: PMC10912915 DOI: 10.1016/j.psj.2024.103559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/16/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a master regulator of adipogenesis. Our previous study revealed that chicken PPARγ has 3 alternative promoters named as P1, P2, and P3, and the DNA methylation of promoter P3 was negatively associated with PPARγ mRNA expression in abdominal adipose tissue (AAT). However, the methylation status of promoters P1 and P2 is unclear. Here we assessed promoter P1 methylation status in AAT of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). The results showed that promoter P1 methylation differed in AAT between the lean and fat lines of NEAUHLF at 7 wk of age (p < 0.05), and AAT expression of PPARγ transcript 1 (PPARγ1), which was derived from the promoter P1, was greatly higher in fat line than in lean line at 2 and 7 wk of age. The results of the correlation analysis showed that P1 methylation was positively correlated with PPARγ1 expression at 7 wk of age (Pearson's r = 0.356, p = 0.0242), suggesting P1 methylation promotes PPARγ1 expression. To explore the underlying molecular mechanism of P1 methylation on PPARγ1 expression, bioinformatics analysis, dual-luciferase reporter assay, pyrosequencing, and electrophoresis mobility shift assay (EMSA) were performed. The results showed that transcription factor NRF1 repressed the promoter activity of the unmethylated P1, but not the methylated P1. Of all the 4 CpGs (CpG48, CpG49, CpG50, and CpG51), which reside within or nearby the NRF1 binding sites of the P1, only CpG49 methylation in AAT was remarkably higher in the fat line than in lean line at 7 wk of age (3.18 to 0.57, p < 0.05), and CpG49 methylation was positively correlated with PPARγ1 expression (Pearson's r = 0.3716, p = 0.0432). Furthermore, EMSA showed that CpG49 methylation reduced the binding of NRF1 to the P1. Taken together, our findings illustrate that P1 methylation promotes PPARγ1 expression at least in part by preventing NRF1 from binding to the promoter P1.
Collapse
Affiliation(s)
- T T Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - J X Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - B L Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - F Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - H Y Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - T Y Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - H Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - N Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China.
| |
Collapse
|
5
|
Zhang Z, Zhang Y, Ma L, Bao Q, Liang C, Chu M, Guo X, Bao P, Yan P. DNA methylation dynamics during yak adipocyte differentiation. Int J Biol Macromol 2024; 261:129715. [PMID: 38281519 DOI: 10.1016/j.ijbiomac.2024.129715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
In mammals, epigenetic modifications involving DNA methylation are necessary for the completion of the cell differentiation process. However, the global DNA methylation landscape and its dynamics during yak adipocyte differentiation remain unexplored. Here, we performed whole-genome bisulfite sequencing (WGBS) to asses DNA methylation in yak preadipocytes and adipocytes, combining these results with those of our previous studies on changes in chromatin accessibility and gene expression during yak adipogenesis. The results showed that CG methylation levels were lower in promoter than in exon and intron, and gradually decreasing from the distal regions to transcription start site (TSS). There was a significant negative correlation between CG methylation levels located in promoter and gene expression levels. The 46 genes shared by CG differentially methylated regions (DMRs) and differential chromatin accessibility were significantly enriched in Hedgehog and PI3K-Akt signaling pathways. ATAC-seq peaks with high chromatin accessibility located in both promoter (≤ 2 kb from TSS) and distal (> 2 kb from TSS) regions corresponded to low methylation levels. Taken together, these findings demonstrated that DNA methylation and its interactions with chromatin accessibility regulate gene expression during yak adipocyte differentiation, contributing to the understanding of mechanisms of various epigenetic modifications and their interactions in adipogenesis.
Collapse
Affiliation(s)
- Zhilong Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfeng Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; School of Basic Medical Science, Xi'an Medical University, Xi'an 710021, China
| | - Lanhua Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Qi Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
6
|
Ye M, Fan Z, Xu Y, Luan K, Guo L, Zhang S, Luo Q. Exploring the association between fat-related traits in chickens and the RGS16 gene: insights from polymorphism and functional validation analysis. Front Vet Sci 2023; 10:1180797. [PMID: 37234072 PMCID: PMC10205986 DOI: 10.3389/fvets.2023.1180797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Excessive fat deposition in chickens can lead to reduced feed utilization and meat quality, resulting in significant economic losses for the broiler industry. Therefore, reducing fat deposition has become an important breeding objective in addition to achieving high broiler weight, growth rate, and feed conversion efficiency. In our previous studies, we observed high expression of Regulators of G Protein Signaling 16 Gene (RGS16) in high-fat individuals. This led us to speculate that RGS16 might be involved in the process of fat deposition in chickens. Methods Thus, we conducted a polymorphism and functional analysis of the RGS16 gene to investigate its association with fat-related phenotypic traits in chickens. Using a mixed linear model (MLM), this study explored the relationship between RGS16 gene polymorphisms and fat-related traits for the first time. We identified 30 SNPs of RGS16 in a population of Wens Sanhuang chickens, among which 8 SNPs were significantly associated with fat-related traits, including sebum thickness (ST), abdominal fat weight (AFW), and abdominal fat weight (AFR). Furthermore, our findings demonstrated that AFW, AFR, and ST showed significant associations with at least two or more out of the eight identified SNPs of RGS16. We also validated the role of RGS16 in ICP-1 cells through various experimental methods, including RT-qPCR, CCK- 8, EdU assays, and oil red O staining. Results Our functional validation experiments showed that RGS16 was highly expressed in the abdominal adipose tissue of high-fat chickens and played a critical role in the regulation of fat deposition by promoting preadipocyte differentiation and inhibiting their proliferation. Taken together, our findings suggest that RGS16 polymorphisms are associated with fat-related traits in chickens. Moreover, the ectopic expression of RGS16 could inhibit preadipocyte proliferation but promote preadipocyte differentiation. Discussion Based on our current findings, we propose that the RGS16 gene could serve as a powerful genetic marker for marker-assisted breeding of chicken fat-related traits.
Collapse
Affiliation(s)
- Mao Ye
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhexia Fan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yuhang Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Kang Luan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
7
|
Zhang T, Li C, Deng J, Jia Y, Qu L, Ning Z. Chicken Hypothalamic and Ovarian DNA Methylome Alteration in Response to Forced Molting. Animals (Basel) 2023; 13:ani13061012. [PMID: 36978553 PMCID: PMC10044502 DOI: 10.3390/ani13061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic modifications play an important role in regulating animal adaptation to external stress. To explore how DNA methylation regulates the expression levels of related genes during forced molting (FM) of laying hens, the hypothalamus and ovary tissues were analyzed at five periods using Whole-Genome Bisulfite Sequencing. The results show that methylation levels fluctuated differently in the exon, intron, 5′UTR, 3′UTR, promoter, and intergenic regions of the genome during FM. In addition, 16 differentially methylated genes (DMGs) regulating cell aging, immunity, and development were identified in the two reversible processes of starvation and redevelopment during FM. Comparing DMGs with differentially expressed genes (DEGs) obtained in the same periods, five hypermethylated DMGs (DSTYK, NKTR, SMOC1, SCAMP3, and ATOH8) that inhibited the expression of DEGs were found. Therefore, DMGs epigenetically modify the DEGs during the FM process of chickens, leading to the rapid closure and restart of their reproductive function and a re-increase in the egg-laying rate. Therefore, this study further confirmed that epigenetic modifications could regulate gene expression during FM and provides theoretical support for the subsequent optimization of FM technology.
Collapse
Affiliation(s)
- Tongyu Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengfeng Li
- Hubei Shendan Healthy Food Co., Ltd., Xiaogan 432600, China
| | - Jianwen Deng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
- Correspondence:
| |
Collapse
|
8
|
The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken - a review. Poult Sci 2023; 102:102657. [PMID: 37054499 PMCID: PMC10123265 DOI: 10.1016/j.psj.2023.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Chicken is a major source of protein for the increasing human population and is useful for research purposes. There are almost 1,600 distinct regional breeds of chicken across the globe, among which a large body of genetic and phenotypic variations has been accumulated due to extensive natural and artificial selection. Moreover, natural selection is a crucial force for animal domestication. Several approaches have been adopted to detect selection signatures in different breeds of chicken using whole genome sequencing (WGS) data including integrated haplotype score (iHS), cross-populated extend haplotype homozygosity test (XP-EHH), fixation index (FST), cross-population composite likelihood ratio (XP-CLR), nucleotide diversity (Pi), and others. In addition, gene enrichment analyses are utilized to determine KEGG pathways and gene ontology (GO) terms related to traits of interest in chicken. Herein, we review different studies that have adopted diverse approaches to detect selection signatures in different breeds of chicken. This review systematically summarizes different findings on selection signatures and related candidate genes in chickens. Future studies could combine different selection signatures approaches to strengthen the quality of the results thereby providing more affirmative inference. This would further aid in deciphering the importance of selection in chicken conservation for the increasing human population.
Collapse
|
9
|
Ning B, Huang J, Xu H, Lou Y, Wang W, Mu F, Yan X, Li H, Wang N. Genomic organization, intragenic tandem duplication, and expression analysis of chicken TGFBR2 gene. Poult Sci 2022; 101:102169. [PMID: 36201879 PMCID: PMC9535321 DOI: 10.1016/j.psj.2022.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Transforming growth factor beta receptor Ⅱ (TGFBR2), a core member of the transforming growth factor-β (TGF-β) signaling pathway. To date, chicken TGFBR2 (cTGFBR2) genomic structure has not been fully explored. Here, the complete sequences of cTGFBR2 transcript isoforms were determined by 5′ and 3′ rapid amplification of cDNA ends (5′ & 3′ RACE) and reverse transcription polymerase chain reaction (RT-PCR); the tissue expression profiling of cTGFBR2 transcript isoforms was performed using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that cTGFBR2 gene produced 3 transcript isoforms though alternative transcription initiation, splicing, and polyadenylation, which were designated as cTGFBR2-1, cTGFBR2-2, and cTGFBR2-3, respectively. These 3 cTGFBR2 transcript isoforms encoded 3 protein isoforms: cTGFBR2-1, cTGFBR2-2, and cTGFBR2-3. Duplication analysis revealed that, unlike other animal species, cTGFBR2 gene harbored a 5.5-kb intragenic tandem duplication. Tissue expression profiling in the 4-wk-old Arbor Acres (AA) broiler chickens showed that cTGFBR2-1 was ubiquitously expressed, with high expression in abdominal fat, subcutaneous fat, lung, gizzard, and muscle; cTGFBR2-2 was highly expressed in heart, kidney, gizzard, and muscle; cTGFBR2-3 was weakly expressed in all the tested chicken tissues. Tissue expression profiling in the 7-wk-old broiler chickens of the fat and lean lines of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) showed that cTGFBR2-1 was significantly differentially expressed in all the tested tissues except heart, cTGFBR2-2 was significantly differentially expressed in all the tested tissues except subcutaneous fat and liver, and cTGFBR2-3 was significantly differentially expressed in all the tested tissues between the lean and fat lines. Intriguingly, in the fat line, the 3 cTGFBR2 transcript isoforms were expressed to varying degrees in all the 3 tested fat tissues, while in the lean line, only cTGFBR2-1 was expressed in all the 3 tested fat tissues. This is the first report of intragenic tandem duplication within TGFBR2 gene. Our findings pave the way for further studies on the functions and regulation of cTGFBR2 gene.
Collapse
Affiliation(s)
- Bolin Ning
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haidong Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuqi Lou
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Weishi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Fang Mu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Yan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Chicken Protein S Gene Regulates Adipogenesis and Affects Abdominal Fat Deposition. Animals (Basel) 2022; 12:ani12162046. [PMID: 36009634 PMCID: PMC9404415 DOI: 10.3390/ani12162046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Low-fat meat is increasingly desired by the public due to the growing popularity of healthy diets, and the excessive accumulation of abdominal fat increases costs in the broiler breeding industry, all of which have encouraged breeding changes in the broiler industry. Investigating fat accumulation at a cellular level from a genetic perspective will help us understand gene-mediated abdominal fat accumulation in chickens. This study aimed to explore the role of the PROS1 gene in adipose cells and its application prospect in broiler breeding. Based on our findings, we found that the PROS1 gene can contribute to adipose cell proliferation and can reduce fat deposits at the cellular level, and its mutations are highly correlated with chicken fat traits. Abstract (1) Background: Excessive abdominal fat deposition in broilers not only causes feed waste but also leads to a series of metabolic diseases. It has gradually become a new breeding goal of the broiler industry to improve growth rates and to reduce abdominal fat rates. In a previous study, PROS1 was highly expressed in low-abdominal fat broilers, suggesting a potential role in broilers adipogenesis. However, the function of PROS1 in preadipocytes and its association with abdominal fat traits need to be characterized. (2) Methods: qRT-PCR and Western Blot were used to quantify gene expression at the RNA and protein levels; flow cytometry and EdU were carried out to detect cell proliferation; and a GLM analysis was used to determine the association between PROS1 SNPs and carcass traits. (3) Results: PROS1 was downregulated in high-abdominal fat chicken; PROS1 contributed preadipocyte proliferation but suppressed preadipocyte differentiation; and the SNPs in the PROS1 5′ flank were significantly associated with the abdominal fat weight rate. (4) Conclusions: Chicken PROS1 is able to suppress adipogenesis, and its polymorphisms are associated with the abdominal fat weight rate, which can be considered the molecular markers for chicken breeding, indicating that PROS1 is an effective potential gene in regulating abdominal fat deposition.
Collapse
|
11
|
Gong P, Jing Y, Liu Y, Wang L, Wu C, Du Z, Li H. Whole-genome bisulfite sequencing of abdominal adipose reveals DNA methylation pattern variations in broiler lines divergently selected for fatness. J Anim Sci 2021; 99:skaa408. [PMID: 33373456 PMCID: PMC8611762 DOI: 10.1093/jas/skaa408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 11/14/2022] Open
Abstract
The methylation status of pivotal genes involved in fat deposition in chickens has been extensively studied. However, the whole-genome DNA methylation profiles of broiler abdominal adipose tissue remain poorly understood. Using whole-genome bisulfite sequencing, we generated DNA methylation profiles of chicken abdominal adipose tissue from Northeast Agricultural University broiler lines divergently selected for abdominal fat content. We aimed to explore whether DNA methylation was associated with abdominal fat deposition in broilers. The whole-genome DNA methylation profiles of fat- and lean-line broilers abdominal adipose tissue were constructed. The DNA methylation levels of functional genomic regions in the fat broiler were higher than those in the lean broiler, especially in the 3' untranslated regions (UTRs) and exons in the non-CG contexts. Additionally, we identified 29,631 differentially methylated regions and, subsequently, annotated 6,484 and 2,016 differentially methylated genes (DMGs) in the gene body and promoter regions between the two lines, respectively. Functional annotation showed that the DMGs in promoter regions were significantly enriched mainly in the triglyceride catabolic process, lipid metabolism-related pathways, and extracellular matrix signal pathways. When the DMG in promoter regions and differentially expressed genes were integrated, we identified 30 genes with DNA methylation levels that negatively correlated with their messenger RNA (mRNA) expression, of which CMSS1 reached significant levels (false discovery rate < 0.05). These 30 genes were mainly involved in fatty acid metabolism, peroxisome-proliferator-activated receptor signaling, Wnt signaling pathways, transmembrane transport, RNA degradation, and glycosaminoglycan degradation. Comparing the DNA methylation profiles between fat- and lean-line broilers demonstrated that DNA methylation is involved in regulating broiler abdominal fat deposition. Our study offers a basis for further exploring the underlying mechanisms of abdominal adipose deposition in broilers.
Collapse
Affiliation(s)
- Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Yang Jing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Yumeng Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Lijian Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Chunyan Wu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Zhiqiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and
Rural Affairs, Harbin, P.R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education
Department of Heilongjiang Province, Harbin, P.R.
China
- College of Animal Science and Technology, Northeast Agricultural
University, Harbin, P.R. China
| |
Collapse
|
12
|
Zhang M, Li D, Zhai Y, Wang Z, Ma X, Zhang D, Li G, Han R, Jiang R, Li Z, Kang X, Sun G. The Landscape of DNA Methylation Associated With the Transcriptomic Network of Intramuscular Adipocytes Generates Insight Into Intramuscular Fat Deposition in Chicken. Front Cell Dev Biol 2020; 8:206. [PMID: 32300590 PMCID: PMC7142253 DOI: 10.3389/fcell.2020.00206] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Intramuscular fat (IMF), which regulated by genetics, nutrition and environment is an important factor that influencing meat quality. Up to now, the epigenetic regulation mechanism underlying poultry IMF deposition remains poorly understood. Here, we focused on the DNA methylation, which usually regulate genes in transcription level. To look into the essential role of DNA methylation on the IMF deposition, chicken intramuscular preadipocytes were isolated and cultured in vitro, and a model of intramuscular adipocyte differentiation was constructed. Combined the whole genome bisulfite sequencing (WGBS) and RNA-Seq technologies, we identified several methylated genes, which mainly affecting fatty acid metabolism and muscle development. Furthermore, we reported that DNA methylation regulate intramuscular adipogenesis by regulating the genes, such as collagen, type VI, alpha 1 (COL6A1) thus affecting IMF deposition. Overexpression of COL6A1 increases the lipid droplet and inhibits cell proliferation by regulating CHAD and CAMK2 in intramuscular adipocytes, while knockdown of COL6A1 shows the opposite effect. Taken together, our results reveal that DNA methylation plays an important role in poultry IMF deposition.
Collapse
Affiliation(s)
- Meng Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Zhai
- The First Clinical Hospital, Jilin University, Changchun, China
| | - Zhengzhu Wang
- The First Clinical Hospital, Jilin University, Changchun, China
| | - Xiangfei Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Daoyu Zhang
- The First Clinical Hospital, Jilin University, Changchun, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
13
|
Sun Y, Li R, Zhai G, Zhang X, Wang Y. DNA methylation of the PLIN1 promoter downregulates expression in chicken lines. Arch Anim Breed 2019; 62:375-382. [PMID: 31807648 PMCID: PMC6852845 DOI: 10.5194/aab-62-375-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/15/2019] [Indexed: 01/04/2023] Open
Abstract
Evidence suggests that Perilipin-1 (PLIN1) is subject to functional regulation by epigenetic modifications in women with obesity. However, whether chicken PLIN1 expression is regulated by DNA methylation is unknown. Here, Sequenom MassARRAY and real-time polymerase chain reaction (PCR) were conducted to analyze the promoter methylation status and expression of the PLIN1 gene in Northeast Agricultural University broiler lines divergently selected for abdominal fat content. We found that chicken PLIN1 expression was significantly higher in adipose tissue of fat-line broilers than in lean lines at 1-7 weeks of age, and was significantly positively correlated with abdominal fat percentage (AFP) in chicken adipose development (Pearson's r = 0.627 , P < 0.001 ). The region analyzed for DNA methylation was from - 12 to - 520 bp upstream of the translation start codon ATG, and had five CpG sites, where only the DNA methylation levels of CpG5 located at position - 490 bp were significantly higher in lean compared to fat chickens at 5 and 6 weeks ( P < 0.05 ) and were significantly negatively correlated with PLIN1 mRNA levels and AFP ( P < 0.05 ). These results shed new light on the regulation of hypertrophic growth in chicken adipose development.
Collapse
Affiliation(s)
- Yuhang Sun
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Rui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guiying Zhai
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Heilongjiang 150030, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
14
|
Almeida OAC, Moreira GCM, Rezende FM, Boschiero C, de Oliveira Peixoto J, Ibelli AMG, Ledur MC, de Novais FJ, Coutinho LL. Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics 2019; 20:449. [PMID: 31159736 PMCID: PMC6547531 DOI: 10.1186/s12864-019-5811-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Natural and artificial selection leads to changes in certain regions of the genome resulting in selection signatures that can reveal genes associated with the selected traits. Selection signatures may be identified using different methodologies, of which some are based on detecting contiguous sequences of homozygous identical-by-descent haplotypes, called runs of homozygosity (ROH), or estimating fixation index (FST) of genomic windows that indicates genetic differentiation. This study aimed to identify selection signatures in a paternal broiler TT line at generations 7th and 16th of selection and to investigate the genes annotated in these regions as well as the biological pathways involved. For such purpose, ROH and FST-based analysis were performed using whole genome sequence of twenty-eight chickens from two different generations. RESULTS ROH analysis identified homozygous regions of short and moderate size. Analysis of ROH patterns revealed regions commonly shared among animals and changes in ROH abundance and size between the two generations. Results also suggest that whole genome sequencing (WGS) outperforms SNPchip data avoiding overestimation of ROH size and underestimation of ROH number; however, sequencing costs can limited the number of animals analyzed. FST-based analysis revealed genetic differentiation in several genomic windows. Annotation of the consensus regions of ROH and FST windows revealed new and previously identified genes associated with traits of economic interest, such as APOB, IGF1, IGFBP2, POMC, PPARG, and ZNF423. Over-representation analysis of the genes resulted in biological terms of skeletal muscle, matrilin proteins, adipose tissue, hyperglycemia, diabetes, Salmonella infections and tyrosine. CONCLUSIONS Identification of ROH and FST-based analyses revealed selection signatures in TT line and genes that have important role in traits of economic interest. Changes in the genome of the chickens were observed between the 7th and 16th generations showing that ancient and recent selection in TT line may have acted over genomic regions affecting diseases and performance traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francisco José de Novais
- University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo Brazil
| |
Collapse
|
15
|
Cui T, Xing T, Huang J, Mu F, Jin Y, You X, Chu Y, Li H, Wang N. Nuclear Respiratory Factor 1 Negatively Regulates the P1 Promoter of the Peroxisome Proliferator-Activated Receptor-γ Gene and Inhibits Chicken Adipogenesis. Front Physiol 2018; 9:1823. [PMID: 30618832 PMCID: PMC6305991 DOI: 10.3389/fphys.2018.01823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipogenesis, and alterations in its function are associated with various pathological processes related to metabolic syndrome. Recently, we found that the chicken PPARγ gene is regulated by three alternative promoters (P1, P2 and P3), producing five different transcript isoforms and two protein isoforms. In this study, the P1 promoter structure was characterized. Bioinformatics identified six putative nuclear respiratory factor 1 (NRF1) binding sites in the P1 promoter, and a reporter assay showed that NRF1 inhibited the activity of the P1 promoter. Of the six putative NRF1 binding sites, individual mutations of three of them abolished the inhibitory effect of NRF1 on P1 promoter activity. Furthermore, a ChIP assay indicated that NRF1 directly bound to the P1 promoter, and real-time quantitative RT-PCR analysis showed that NRF1 mRNA expression was negatively correlated with PPARγ1 expression (Pearson’s r = -0.148, p = 0.033). Further study showed that NRF1 overexpression inhibited the differentiation of the immortalized chicken preadipocyte cell line (ICP1), which was accompanied by reduced PPARγ1 mRNA expression. Taken together, our findings indicated that NRF1 directly negatively regulates the P1 promoter of the chicken PPARγ gene and inhibits adipogenesis.
Collapse
Affiliation(s)
- Tingting Cui
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Institute of Animal Science of Heilongjiang Province, Qiqihar, China
| | - Tianyu Xing
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fang Mu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yanfei Jin
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xin You
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yankai Chu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Yusuf MS, El Nabtiti AA, Hassan MA, Mandour MA. Supplementary outcomes of betaine on economic and productive performance, some biochemical parameters, and lipoprotein lipase gene expression in finishing male broilers. Int J Vet Sci Med 2018; 6:213-218. [PMID: 30564598 PMCID: PMC6286624 DOI: 10.1016/j.ijvsm.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 01/23/2023] Open
Abstract
Egypt's population is growing with the biggest hurdle facing the Government is to secure animal protein. Broilers provide quality protein of reasonable price. This study was conducted to investigate the outcomes of dietary organic betaine (betafin S4) on productive, epigenetic make up of lipoprotein lipase gene (LPL) promoter, some blood biochemical, and economic parameters in male broilers at finishing period. Eighty one commercial Arbor Acre Plus males, 21 days old, were randomly allocated to three groups, with three replicates each in battery cages under thermo-neutral environment till 42 days. The examined groups received yellow corn-soy basal diet, supplemented with 0 (G1), 1.5 (G2) and 3.0 g (G3) betaine/kg diet, respectively. The mRNA expression levels of LPL gene were analyzed by real-time quantitative PCR. Methylation pattern on LPL gene promoter was determined by bisulfite sequencing. Doses of betaine statistically (P ≤ .05) improved tested performance parameters; while carcass yield % and abdominal fat deposition did not achieve significant changes. The expression of LPL mRNA showed an inverse relationship with betaine dose, which illustrated as a trend toward increase in G2 and decrease in G3. Regarding serum biochemistry, both treated groups when compared to control group revealed a significant improvement (P ≤ .01) in albumin level, simultaneously, a significant increase (P ≤ .05) was recorded in uric acid and triglyceride levels, additionally, strong positive (P ≤ .01) correlation between betaine dose and previously mentioned parameters was reported. Betaine is recommended in finishing male broilers as production costs were reduced by 3.97%-4.37% per kg, respectively. In conclusion, incorporation of 0.15-0.30% organic betaine to male broilers diets during finishing period improves the growth performances.
Collapse
Affiliation(s)
- Mohamed S. Yusuf
- Department of Nutrition and Clinical Nutrition, Suez Canal University, Egypt
| | - Adel A. El Nabtiti
- Department of Animal Wealth Development (Animal Production Division), Suez Canal University, Egypt
| | - Marwa A. Hassan
- Department of Animal Hygiene, Zoonoses and Behavior, Suez Canal University, Egypt
| | - Mostafa A. Mandour
- Department of Animal Wealth Development (Veterinary Economics Division), Suez Canal University, Egypt
| |
Collapse
|
17
|
Abdalla BA, Chen J, Nie Q, Zhang X. Genomic Insights Into the Multiple Factors Controlling Abdominal Fat Deposition in a Chicken Model. Front Genet 2018; 9:262. [PMID: 30073018 PMCID: PMC6060281 DOI: 10.3389/fgene.2018.00262] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic selection for an increased growth rate in meat-type chickens has been accompanied by excessive fat accumulation particularly in abdominal cavity. These progressed to indirect and often unhealthy effects on meat quality properties and increased feed cost. Advances in genomics technology over recent years have led to the surprising discoveries that the genome is more complex than previously thought. Studies have identified multiple-genetic factors associated with abdominal fat deposition. Meanwhile, the obesity epidemic has focused attention on adipose tissue and the development of adipocytes. The aim of this review is to summarize the current understanding of genetic/epigenetic factors associated with abdominal fat deposition, or as it relates to the proliferation and differentiation of preadipocytes in chicken. The results discussed here have been identified by different genomic approaches, such as QTL-based studies, the candidate gene approach, epistatic interaction, copy number variation, single-nucleotide polymorphism screening, selection signature analysis, genome-wide association studies, RNA sequencing, and bisulfite sequencing. The studies mentioned in this review have described multiple-genetic factors involved in an abdominal fat deposition. Therefore, it is inevitable to further study the multiple-genetic factors in-depth to develop novel molecular markers or potential targets, which will provide promising applications for reducing abdominal fat deposition in meat-type chicken.
Collapse
Affiliation(s)
- Bahareldin A. Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- National-Local Joint Engineering Research Center for Livestock Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Jie Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- National-Local Joint Engineering Research Center for Livestock Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- National-Local Joint Engineering Research Center for Livestock Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- National-Local Joint Engineering Research Center for Livestock Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
18
|
Lecoutre S, Pourpe C, Butruille L, Marousez L, Laborie C, Guinez C, Lesage J, Vieau D, Eeckhoute J, Gabory A, Oger F, Eberlé D, Breton C. Reduced PPARγ2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications. FASEB J 2018; 32:2768-2778. [PMID: 29295860 DOI: 10.1096/fj.201700997r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates program obesity later in life. White adipose tissue (WAT) has been the focus of developmental programming events, although underlying mechanisms remain elusive. In rodents, WAT development primarily occurs during lactation. We previously reported that adult rat offspring from dams fed a high-fat (HF) diet exhibited fat accumulation and decreased peroxisome proliferator-activated receptor γ (PPARγ) mRNA levels in WAT. We hypothesized that PPARγ down-regulation occurs via epigenetic malprogramming which takes place during adipogenesis. We therefore examined epigenetic modifications in the PPARγ1 and PPARγ2 promoters in perirenal (pWAT) and inguinal fat pads of HF offspring at weaning (postnatal d 21) and in adulthood. Postnatal d 21 is a period characterized by active epigenomic remodeling in the PPARγ2 promoter (DNA hypermethylation and depletion in active histone modification H3ac and H3K4me3) in pWAT, consistent with increased DNA methyltransferase and DNA methylation activities. Adult HF offspring exhibited sustained hypermethylation and histone modification H3ac of the PPARγ2 promoter in both deposits, correlated with persistent decreased PPARγ2 mRNA levels. Consistent with the DOHaD hypothesis, retained epigenetic marks provide a mechanistic basis for the cellular memory linking maternal obesity to a predisposition for later adiposity.-Lecoutre, S., Pourpe, C., Butruille, L., Marousez, L., Laborie, C., Guinez, C., Lesage, J., Vieau, D., Eeckhoute, J., Gabory, A., Oger, F., Eberlé, D., Breton, C. Reduced PPARγ2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications.
Collapse
Affiliation(s)
- Simon Lecoutre
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Charlène Pourpe
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Laura Butruille
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Lucie Marousez
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Christine Laborie
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Céline Guinez
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Jean Lesage
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Didier Vieau
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Jérôme Eeckhoute
- Institut Pasteur de Lille, Unité 1011-European Genomic Institute for Diabetes (EGID), INSERM, Centre Hospitalier Universitaire Lille, Université de Lille, Lille, France
| | - Anne Gabory
- Unité Mixte de Recherche (UMR), Biologie du Développement et Reproduction (BDR), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire d'Alfort (ENVA), Université Paris Saclay, Jouy-en-Josas, France
| | - Frédérik Oger
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Delphine Eberlé
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| | - Christophe Breton
- Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Equipe d'Accueil (EA) 4489, University of Lille, Lille, France
| |
Collapse
|
19
|
De Paoli-Iseppi R, Deagle BE, McMahon CR, Hindell MA, Dickinson JL, Jarman SN. Measuring Animal Age with DNA Methylation: From Humans to Wild Animals. Front Genet 2017; 8:106. [PMID: 28878806 PMCID: PMC5572392 DOI: 10.3389/fgene.2017.00106] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/02/2017] [Indexed: 01/19/2023] Open
Abstract
DNA methylation (DNAm) is a key mechanism for regulating gene expression in animals and levels are known to change with age. Recent studies have used DNAm changes as a biomarker to estimate chronological age in humans and these techniques are now also being applied to domestic and wild animals. Animal age is widely used to track ongoing changes in ecosystems, however chronological age information is often unavailable for wild animals. An ability to estimate age would lead to improved monitoring of (i) population trends and status and (ii) demographic properties such as age structure and reproductive performance. Recent studies have revealed new examples of DNAm age association in several new species increasing the potential for developing DNAm age biomarkers for a broad range of wild animals. Emerging technologies for measuring DNAm will also enhance our ability to study age-related DNAm changes and to develop new molecular age biomarkers.
Collapse
Affiliation(s)
- Ricardo De Paoli-Iseppi
- Institute for Marine and Antarctic Studies, University of TasmaniaHobart, TAS, Australia.,Australian Antarctic DivisionHobart, TAS, Australia
| | | | | | - Mark A Hindell
- Institute for Marine and Antarctic Studies, University of TasmaniaHobart, TAS, Australia
| | - Joanne L Dickinson
- Cancer, Genetics and Immunology Group, Menzies Institute for Medical ResearchHobart, TAS, Australia
| | - Simon N Jarman
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin UniversityPerth, WA, Australia.,CSIRO Indian Ocean Marine Research Centre, University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
20
|
Kosaka K, Kubota Y, Adachi N, Akita S, Sasahara Y, Kira T, Kuroda M, Mitsukawa N, Bujo H, Satoh K. Human adipocytes from the subcutaneous superficial layer have greater adipogenic potential and lower PPAR-γ DNA methylation levels than deep layer adipocytes. Am J Physiol Cell Physiol 2016; 311:C322-9. [PMID: 27251439 DOI: 10.1152/ajpcell.00301.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/27/2016] [Indexed: 02/07/2023]
Abstract
Human subcutaneous fat tissue consists of two layers, superficial adipose tissue (SAT) and deep adipose tissue (DAT). Some recent reports suggest that a disproportionate accumulation of DAT is related to obesity-associated metabolic complications. However, the differences in adipocyte function between SAT and DAT are unclear. To clarify the differences in human adipocyte characteristics between SAT and DAT, human ceiling culture-derived proliferative adipocytes (ccdPAs) were primary cultured from SAT and DAT of three lean female patients. Differences in adipogenic differentiation potential and sensitivity to exogenous adipogenic factors were examined. Epigenetic modification of the CpG island DNA methylation levels of genes related to adipogenesis was measured. In histological analyses, the mean adipocyte size in SAT was significantly larger than that in DAT (8,741 ± 416 vs. 7,732 ± 213 μm(2), P < 0.05). Primary cultured adipocytes from SAT showed significantly greater adipogenesis than did those of DAT. Sensitivity to partial adipogenic stimulation was significantly different between ccdPAs of SAT and DAT. Peroxisome proliferator-activated receptor-γ (PPAR-γ) protein expression and leptin protein secretion from ccdPAs were significantly higher in SAT than DAT. DNA methylation levels of PPAR-γ were significantly lower in ccdPAs of SAT than DAT. Adipocyte size was larger in SAT than DAT in vivo. This is consistent with the findings of an in vitro study that, compared with ccdPAs in DAT, ccdPAs in SAT have higher adipogenic potential and lower DNA methylation levels of PPAR-γ.
Collapse
Affiliation(s)
- Kentaro Kosaka
- Department of Plastic Surgery, Chiba University Chuo-ku, Chiba-city, Chiba, Japan
| | - Yoshitaka Kubota
- Department of Plastic Surgery, Chiba University Chuo-ku, Chiba-city, Chiba, Japan;
| | - Naoki Adachi
- Department of Plastic Surgery, Chiba University Chuo-ku, Chiba-city, Chiba, Japan
| | - Shinsuke Akita
- Department of Plastic Surgery, Chiba University Chuo-ku, Chiba-city, Chiba, Japan
| | - Yoshitaro Sasahara
- Department of Plastic Surgery, Chiba University Chuo-ku, Chiba-city, Chiba, Japan
| | - Tomoe Kira
- Department of Plastic Surgery, Chiba University Chuo-ku, Chiba-city, Chiba, Japan
| | - Masayuki Kuroda
- Center for Advanced Medicine, Chiba University, Chiba-city, Chiba, Japan
| | - Nobuyuki Mitsukawa
- Department of Plastic Surgery, Chiba University Chuo-ku, Chiba-city, Chiba, Japan
| | - Hideaki Bujo
- Department of Research and Development, Toho University, Sakura-city, Chiba, Japan
| | - Kaneshige Satoh
- Department of Plastic Surgery, Chiba University Chuo-ku, Chiba-city, Chiba, Japan
| |
Collapse
|
21
|
Pannia E, Cho CE, Kubant R, Sánchez-Hernández D, Huot PSP, Harvey Anderson G. Role of maternal vitamins in programming health and chronic disease. Nutr Rev 2016; 74:166-80. [PMID: 26883881 DOI: 10.1093/nutrit/nuv103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vitamin consumption prior to and during pregnancy has increased as a result of proactive recommendations by health professionals, wide availability of vitamin supplements, and liberal food-fortification policies. Folic acid, alone or in combination with other B vitamins, is the most recommended vitamin consumed during pregnancy because deficiency of this vitamin leads to birth defects in the infant. Folic acid and other B vitamins are also integral components of biochemical processes that are essential to the development of regulatory systems that control the ability of the offspring to adapt to the external environment. Although few human studies have investigated the lasting effects of high vitamin intakes during pregnancy, animal models have shown that excess vitamin supplementation during gestation is associated with negative metabolic effects in both the mothers and their offspring. This research from animal models, combined with the recognition that epigenetic regulation of gene expression is plastic, provides evidence for further examination of these relationships in the later life of pregnant women and their children.
Collapse
Affiliation(s)
- Emanuela Pannia
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Clara E Cho
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ruslan Kubant
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Diana Sánchez-Hernández
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pedro S P Huot
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - G Harvey Anderson
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Role of PRDM16 and its PR domain in the epigenetic regulation of myogenic and adipogenic genes during transdifferentiation of C2C12 cells. Gene 2015; 570:191-8. [DOI: 10.1016/j.gene.2015.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022]
|
23
|
Duan K, Sun Y, Zhang X, Zhang T, Zhang W, Zhang J, Wang G, Wang S, Leng L, Li H, Wang N. Identification and characterization of transcript variants of chicken peroxisome proliferator-activated receptor gamma. Poult Sci 2015; 94:2516-27. [PMID: 26286997 DOI: 10.3382/ps/pev229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma regulates adipogenesis. The genomic structure of the chicken peroxisome proliferator-activated receptor gamma (cPPARγ) gene has not been fully characterized, and only one cPPARγ gene mRNA sequence has been reported in genetic databases. Using 5' rapid amplification of cDNA ends, we identified five different cPPARγ mRNAs that are transcribed from three transcription initiation sites. The open reading frame analysis showed that these five cPPARγ transcript variants (cPPARγ1 to 5) could encode two cPPARγ protein isoforms (cPPARγ1 and cPPARγ2), which differ only in their N-terminal region. Quantitative real-time RT-PCR analysis showed that, of these five cPPARγ transcript variants, cPPARγ1 was ubiquitously highly expressed in various chicken tissues, including adipose tissue, liver, kidney, spleen and duodenal; cPPARγ2 was exclusively highly expressed in adipose tissue; cPPARγ3 was highly expressed in adipose tissue, kidney, spleen and liver; cPPARγ4 and cPPARγ5 were ubiquitously weakly expressed in all the tested tissues, and comparatively, cPPARγ5 was highly expressed in adipose tissue, heart, liver and kidney. The comparison of the expression of the five cPPARγ transcript variants showed that adipose tissue cPPARγ1 expression was significantly higher in the fat line than in the lean line from 2 to 7 wk of age (P < 0.05 or P < 0.01). Adipose tissue cPPARγ3 expression was significantly higher in the fat line than in the lean line at 3, 5 and 6 wk of age (P < 0.01, P < 0.05), but lower at 4 wk of age (P < 0.05). Adipose tissue cPPARγ5 expression was significantly higher in the fat line than in the lean line at 3, 4, and 6 wk of age (P < 0.01) and at 2 and 7 wk of age (P < 0.05). This is the first report of transcript variants and protein isoforms of cPPARγ gene. Our findings provided a foundation for future investigations of the function and regulation of cPPARγ gene in adipose tissue development.
Collapse
Affiliation(s)
- Kui Duan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yingning Sun
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Xiaofei Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianmu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wenjian Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guihua Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
24
|
Gao Y, Sun Y, Duan K, Shi H, Wang S, Li H, Wang N. CpG site DNA methylation of theCCAAT/enhancer-binding protein, alphapromoter in chicken lines divergently selected for fatness. Anim Genet 2015; 46:410-7. [DOI: 10.1111/age.12326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan Gao
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin Heilongjiang 150030 China
| | - Yingning Sun
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin Heilongjiang 150030 China
- College of Life Science and Agriculture Forestry; Qiqihar University; Qiqihar Heilongjiang 161006 China
| | - Kui Duan
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin Heilongjiang 150030 China
| | - Hongyan Shi
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin Heilongjiang 150030 China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin Heilongjiang 150030 China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin Heilongjiang 150030 China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding; Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction; Education Department of Heilongjiang Province; College of Animal Science and Technology; Northeast Agricultural University; Harbin Heilongjiang 150030 China
| |
Collapse
|
25
|
Khaire AA, Kale AA, Joshi SR. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review. Prostaglandins Leukot Essent Fatty Acids 2015; 98:49-55. [PMID: 25958298 DOI: 10.1016/j.plefa.2015.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
It is well established that alterations in the mother's diet or metabolism during pregnancy has long-term adverse effects on the lipid metabolism in the offspring. There is growing interest in the role of specific nutrients especially omega-3 fatty acids in the pathophysiology of lipid disorders. A series of studies carried out in humans and rodents in our department have consistently suggested a link between omega-3 fatty acids especially docosahexaenoic acid and micronutrients (vitamin B12 and folic acid) in the one carbon metabolic cycle and its effect on the fatty acid metabolism, hepatic transcription factors and DNA methylation patterns. However the association of maternal intake or metabolism of these nutrients with fetal lipid metabolism is relatively less explored. In this review, we provide insights into the role of maternal omega-3 fatty acids and vitamin B12 and their influence on fetal lipid metabolism through various mechanisms which influence phosphatidylethanolamine-N-methyltransferase activity, peroxisome proliferator activated receptor, adiponectin signaling pathway and epigenetic process like chromatin methylation. This will help understand the possible mechanisms involved in fetal lipid metabolism and may provide important clues for the prevention of lipid disorders in the offspring.
Collapse
Affiliation(s)
- Amrita A Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita A Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|