1
|
Huang Z, Yu X, Jiang Z, Tang G, Gao S, Xiang Y, Luo Y, Ye B, Li Y, Song P, Xin Y, Du M, Zhao J, Wang B. Neonatal vitamin A but not retinoic acid administration increases intramuscular adipocyte number in sheep by promoting vascularization. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:215-225. [PMID: 39635420 PMCID: PMC11615889 DOI: 10.1016/j.aninu.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 12/07/2024]
Abstract
This study investigated whether vitamin A (VA) administration during the neonatal stage could increase the number of intramuscular adipocytes in Hu sheep by promoting vascularity. A total of 56 newborn male Hu sheep were divided into four groups and received intramuscular injections of either 0, 7500 IU retinoic acid (RA), 7500 IU VA, or a combination of 7500 IU VA and 5 mg SU5416 (an angiogenic inhibitor), at 1, 7, 14, and 21 days of age. At 15 days of age, 6 sheep from each group were randomly selected and sacrificed for intramuscular adipogenic capacity analysis. The remaining 8 sheep in each group were raised until they were 8 months old. VA-treated sheep exhibited an increase in preadipocytes, elevated expression of adipogenic genes (CCAAT enhancer binding protein alpha [CEBPA] and CCAAT enhancer binding protein beta [CEBPB]) and angiogenic genes (vascular endothelial growth factor A [VEGFA]), and stromal vascular fraction cells in the longissimus dorsi (LD) muscle with enhanced adipogenic capacity (P < 0.05). These effects were entirely negated by SU5416. Upon slaughter, VA increased final weight, carcass weight, and average daily gain (P < 0.05) but did not affect feed intake at 21 to 32 weeks (P = 0.824). VA increased the number of intramuscular adipocytes in the LD and semitendinosus (ST) muscle (P < 0.05) without changing the adipocyte number of the omentum, perirenal and subcutaneous fats (P > 0.05). VA injections also increased intramuscular triglyceride (TG) content (P = 0.016) without changing the omentum fat weight or subcutaneous fat thickness (P > 0.05), but it did increase the perirenal fat weight (P = 0.011). Consistently, SU5416 mitigated the effects of VA on intramuscular TG content and adipocyte count, correlating with a decrease in vascularity. In contrast, RA injections didn't affect the intramuscular fat (P = 0.744) but reduced the TG content of the omentum and perirenal fat (P < 0.05). In conclusion, intramuscular injections of VA but not RA at the neonatal stage improved the growth performance of Hu sheep, increasing the number of intramuscular adipocytes and marbling by promoting angiogenesis.
Collapse
Affiliation(s)
- Zhongzuo Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoxiao Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zongyou Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gaojian Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaoqi Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifan Xiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yicheng Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Boping Ye
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yating Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yu Xin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Abebe BK, Wang J, Guo J, Wang H, Li A, Zan L. A review of emerging technologies, nutritional practices, and management strategies to improve intramuscular fat composition in beef cattle. Anim Biotechnol 2024; 35:2388704. [PMID: 39133095 DOI: 10.1080/10495398.2024.2388704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Santinello M, Penasa M, Goi A, Rampado N, Hocquette JF, De Marchi M. Relationships between European carcass evaluation and Meat Standards Australia grading scheme applied to young beef cattle. Meat Sci 2024; 216:109575. [PMID: 38943842 DOI: 10.1016/j.meatsci.2024.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The European carcass grading scheme (EUROP) places large emphasis on meat yield and therefore on quantitative traits such as carcass conformation and superficial fat coverage. However, it falls short in considering sensory properties and consumer satisfaction. In contrast, the Meat Standards Australia (MSA) grading scheme considers, among others, animals' ossification, marbling, and ultimate pH as primary indicators of beef eating quality. This study aims to characterize MSA carcass grading scheme applied to the Italian beef production system, considering its significant role in European beef market. The study involved 3204 Charolais, Limousin, and crossbred young bulls and heifers slaughtered in a commercial Italian abattoir. Data collection spanned a broad range of variables, including animal characteristics, MSA traits, and EUROP carcass grading traits. Regardless of the sex of the animal, no significant relationship was observed between MSA traits and EUROP carcass grading scores. Factors such as sex, age, and arrival season at the fattening unit significantly affected most of MSA traits. Females had significantly higher marbling score, and lower ossification score and hump height than males. Animals imported in autumn and winter had significantly lower marbling score, but similar ossification score compared to those imported in spring and summer. Older females had the highest marbling scores. While further research is needed to assess whether the MSA grading scheme can be adapted to all different European rearing systems, results of this study are a prelude to the potential benefits that the MSA grading scheme can bring to the European beef industry.
Collapse
Affiliation(s)
- Matteo Santinello
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Arianna Goi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Nicola Rampado
- Associazione Zootecnica Veneta (AZoVe), Via del Macello 9, 35013 Cittadella, PD, Italy
| | - Jean-François Hocquette
- INRAE, Clermont Auvergne University, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| |
Collapse
|
4
|
Liu S, Yang Y, Luo H, Pang W, Martin GB. Fat deposition and partitioning for meat production in cattle and sheep. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:376-386. [PMID: 38812494 PMCID: PMC11134559 DOI: 10.1016/j.aninu.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 03/11/2024] [Indexed: 05/31/2024]
Abstract
In markets for beef and sheep meat, an appropriate level of intramuscular fat (IMF) is highly desirable for meat-eating quality, but strategies to improve it usually lead to an undesirable excess in carcase fat, presenting a major challenge to livestock producers. To solve this problem, we need to understand the partitioning of fat among the major fat depots: IMF, subcutaneous fat (SCF) and visceral fat (VF). In most genotypes of cattle and sheep, the rate of accretion is lower for IMF than for SCF and VF, so genetic selection for a high level of IMF, or the use of an increased dietary energy supply to promote IMF deposition, will increase overall fatness and feed costs. On the other hand, feeding postnatal calves with excessive concentrates promotes IMF deposition, so a nutritional strategy is feasible. With genetic strategies, several problems arise: 1) positive genetic correlations between IMF, SCF and VF differ among genotypes in both cattle and sheep; 2) genotypes appear to have specific, characteristic rates of accretion of IMF during periods of growth and fattening; 3) most breeds of cattle and sheep naturally produce meat with relatively low levels of IMF, but IMF does vary substantially among individuals and breeds so progress is possible through accurate measurement of IMF. Therefore, an essential prerequisite for selection will be knowledge of the genetic correlations and fat accretion rates for each genotype. Currently, selection for IMF is based on existing technology that directly measures IMF in the progeny or siblings, or estimates IMF in live animals. New technology is needed to permit the simultaneous measurement of SCF and IMF in the field, thus opening up the possibility of accurate selection, particularly for fat partitioning in live animals. Specifically, there would be great value in detecting individuals with an IMF advantage at an early age so the generation interval could be shortened and genetic gain accelerated. Genetic gain would also be greatly aided if we could select for genes that control adipogenesis and lipogenesis and are also differentially expressed in the various depots.
Collapse
Affiliation(s)
- Shimin Liu
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yanyan Yang
- Institute of Animal Husbandry of Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Yuquan, Hohhot 010020, China
| | - Hailing Luo
- College of Animal Science and Technology of China Agricultural University, Haidian, Beijing 100093, China
| | - Wenjie Pang
- Resonance Health, Burswood, WA 6100, Australia
| | - Graeme B. Martin
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Chen K, Shui Y, Deng M, Guo Y, Sun B, Liu G, Liu D, Li Y. Effects of different dietary energy levels on growth performance, meat quality and nutritional composition, rumen fermentation parameters, and rumen microbiota of fattening Angus steers. Front Microbiol 2024; 15:1378073. [PMID: 38770021 PMCID: PMC11102963 DOI: 10.3389/fmicb.2024.1378073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
This study investigates the effects of varying energy levels in diets on Black Angus steers, focusing on growth performance, muscle composition, rumen microbial community, and their interrelationships. Twenty-seven Black Angus steers, aged approximately 22 months and weighing 520 ± 40 kilograms, were randomly divided into three groups: low-energy (LE), medium-energy (ME), and high-energy (HE). Each group consisted of nine individuals. The steers were fed diets with energy levels of 6.657 MJ/kg (LE), 7.323 MJ/kg (ME), and 7.990 MJ/kg (HE) following a 14-day pre-feeding period, with a subsequent 90-day main experimental phase. After the 90-day feeding period, both the HE and ME groups exhibited significantly higher average daily weight gain (ADG) compared to the LE group (p < 0.05). The feed-to-weight ratios were lower in the HE and ME groups compared to the LE group (p < 0.05). The HE group showed significantly higher crude fat content in the longissimus dorsi muscle compared to the LE group (p < 0.05), with total fatty acid content in the muscle surpassing that in the ME and LE groups (p < 0.05). As dietary energy levels increased, the diversity of the rumen microbial community decreased (p < 0.05), and significant differences in bacterial community structure were observed between the LE and HE groups (p < 0.05). The results suggest that higher dietary energy levels enhance growth performance and alter muscle composition in Black Angus steers, while also influencing the rumen microbial community. This study contributes to understanding optimal dietary strategies for finishing Angus cattle to improve beef quality, economic returns, and the development of standardized production procedures.
Collapse
Affiliation(s)
- Kaihao Chen
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yanghaoer Shui
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Halli K, König S, Giambra IJ. Association study between SNP markers located in meat quality candidate genes with intramuscular fat content in an endangered dual-purpose cattle population. Transl Anim Sci 2024; 8:txae066. [PMID: 38737521 PMCID: PMC11088282 DOI: 10.1093/tas/txae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
The aim of this study was to associate single nucleotide polymorphisms (SNP) of the bovine calcium-activated neutral protease µ-calpain, calpastatin, diacylglycerol-O-acyltransferase, adipose fatty acid binding protein, retinoic acid receptor-related orphan receptor C (RORC), and thyroglobulin (TG) gene with intramuscular fat content (IMF). Therefore, 542 animals of the cattle breed "Rotes Höhenvieh" (RHV) were phenotyped for IMF. Genotyping of the animals was performed using polymerase chain reaction-restriction fragment length polymorphism tests for six SNP from candidate genes for meat quality traits. In addition, we calculated allele substitution and dominance effects on IMF. A subgroup of animals (n = 44, reduced dataset) with extraordinary high IMF was analyzed separately. The mean IMF content was 2.5% (SD: 2.8) but ranged from 0.02% to 23.9%, underlining the breeds' potential for quality meat production. Allele and genotype frequencies for all SNP were similar in the complete and reduced dataset. Association analyses in the complete dataset revealed the strongest effects of RORC on IMF (P = 0.075). The log-transformed least-squares mean for IMF of genotype g.3290GG was 0.45 ± 0.16, 0.26 ± 0.14 for genotype g.3290GT, and 0.32 ± 0.14 for genotype g.3290TT. In the reduced dataset, we found a significant effect (P < 0.05) of the g.422C>T-SNP of TG on IMF, with highest IMF for genotype CT (0.91 ± 0.17), lowest IMF for genotype TT (0.37 ± 0.25), and medium IMF for genotype CC (0.59 ± 0.16; log-transformed values). Compared to the complete dataset, allele substitution effects increased in the reduced dataset for most of the SNP, possibly due to the selective genotyping strategy, with focus on animals with highest IMF implying strong phenotypic IMF contrast. Dominance effects were small in both datasets, related to the high heritability of IMF. Results indicated RHV breed particularities regarding the effects of meat quality genes on IMF. An explanation might be the breeding history of RHV with focus on adaptation and resilience in harsh outdoor systems. Consequently, it is imperative to develop breed-specific selection strategies. Allele substitution and dominance effects were in a similar direction in both datasets, suggesting the same breeding approaches for different RHV strains in different regions. Nevertheless, a selective genotyping approach (reduced dataset), contributed to more pronounced genotype effect differences on IMF and dominance values.
Collapse
Affiliation(s)
- Kathrin Halli
- Institute of Animal Breeding and Genetics, Justus-Liebig-University, 35390 Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University, 35390 Giessen, Germany
| | - Isabella J Giambra
- Institute of Animal Breeding and Genetics, Justus-Liebig-University, 35390 Giessen, Germany
| |
Collapse
|
7
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Kostusiak P, Slósarz J, Gołębiewski M, Grodkowski G, Puppel K. Polymorphism of Genes and Their Impact on Beef Quality. Curr Issues Mol Biol 2023; 45:4749-4762. [PMID: 37367051 DOI: 10.3390/cimb45060302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The single-nucleotide polymorphism (SNP) form of genes is a valuable source of information regarding their suitability for use as specific markers of desirable traits in beef cattle breeding. For several decades, breeding work focused on improving production efficiency through optimizing the feed conversion ratio and improving daily gains and meat quality. Many research teams previously undertook research work on single-nucleotide polymorphism in myostatin (MSTN), thyroglobulin (TG), calpain (CAPN), and calpastatin (CAST) proteins. The literature review focuses on the most frequently addressed issues concerning these genes in beef cattle production and points to a number of relevant studies on the genes' polymorphic forms. The four genes presented are worth considering during breeding work as a set of genes that can positively influence productivity and production quality.
Collapse
Affiliation(s)
- Piotr Kostusiak
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Grzegorz Grodkowski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
9
|
Nguyen DV, Nguyen OC, Malau-Aduli AE. Main regulatory factors of marbling level in beef cattle. Vet Anim Sci 2021; 14:100219. [PMID: 34877434 PMCID: PMC8633366 DOI: 10.1016/j.vas.2021.100219] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The content of intramuscular fat (IMF), that determines marbling levels is considered as one of the vital factors influencing beef sensory quality including tenderness, juiciness, flavour and colour. The IMF formation in cattle commences around six months after conception, and continuously grows throughout the life of the animal. The accumulation of marbling is remarkably affected by genetic, sexual, nutritional and management factors. In this review, the adipogenesis and lipogenesis process regulated by various factors and genes during fetal and growing stages is briefly presented. We also discuss the findings of recent studies on the effects of breed, gene, heritability and gender on the marbling accumulation. Various research reported that feeding during pregnancy, concentrate to roughage ratios and the supplementation or restriction of vitamin A, C, and D are crucial nutritional factors affecting the formation and development of IMF. Castration and early weaning combined with high energy feeding are effective management strategies for improving the accumulation of IMF. Furthermore, age and weight at slaughter are also reviewed because they have significant effects on marbling levels. The combination of several factors could positively affect the improvement of the IMF deposition. Therefore, advanced strategies that simultaneously apply genetic, sexual, nutritional and management factors to achieve desired IMF content without detrimental impacts on feed efficiency in high-marbling beef production are essential.
Collapse
Affiliation(s)
- Don V. Nguyen
- National Institute of Animal Science, Bac Tu Liem, Hanoi 29909, Vietnam
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Oanh C. Nguyen
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Aduli E.O. Malau-Aduli
- Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
10
|
The Meat Quality Characteristics of Holstein Calves: The Story of Israeli 'Dairy Beef'. Foods 2021; 10:foods10102308. [PMID: 34681357 PMCID: PMC8534874 DOI: 10.3390/foods10102308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 01/06/2023] Open
Abstract
Global animal production systems are often criticized for their lack of sustainability and insufficient resilience to ensure food security. The ‘farm-to-fork’ approach aims at orienting food systems towards the creation of a positive environmental impact, nutritious, healthy, safe and sufficient foods, and fairer economic returns for primary producers. Many countries rely on an imported supply of live animals to fulfill their needs for fresh meat. In Israel, ~60% of the sources of fresh beef come from the import of live animals. In order to encourage sustainable beef production in Israel, the proportion of local beef should be raised at the expense of imported animals. However, for this to be achieved, the superior performance of local beef should be justified. The current study was conducted to compare between the meat quality characteristics of local (Israeli Holstein; N = 205) vs. imported (Australian; N = 169) animals. Generally, while the imported calves presented a higher dressing percentage (p < 0.0001), the local animals were characterized by tenderer meat (p < 0.0001), longer sarcomeres (p < 0.0001), higher a* color attributes and pH (p < 0.001), superior cooking (p = 0.002) and thawing loss (p < 0.0001), higher intra-muscular fat (IMF) content, and a higher PUFA proportion (p < 0.01 and p < 0.0001, respectively) and PUFA:SFA ratio. The findings shown herein may provide sound arguments for stakeholders and policy makers to facilitate sustainable local beef production in Israel.
Collapse
|
11
|
Therkildsen M, Greenwood PL, Starkey CP, McPhee M, Walmsley B, Siddell J, Geesink G. Collagen, intramuscular fat and proteolysis affect Warner-Bratzler shear-force of muscles from Bos taurus breed types differently at weaning, after backgrounding on pasture, and after feedlotting. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
The texture of beef is highly important for the eating experience, and there is a continued interest in understanding the biochemical basis for the variation in texture between cattle and their meat cuts in order to improve and minimise variation in tenderness due to production and processing factors.
Aims
The present study aimed to investigate the impact of characteristics of meat on Warner-Bratzler shear-force (WBSF) as an indicator of texture of beef as affected by breed type, age/feeding phase, and muscle.
Methods
Seventy-five steers of three breed types (Angus, Hereford and Wagyu × Angus) were slaughtered after weaning 6 months old (n = 15), after backgrounding 17 months old (n = 30) and after feedlotting 25 months old (n = 30). At slaughter three muscles (M. supraspinatus, M. semitendinosus and M. longissimus lumborum) were sampled from each steer, and pH, intramuscular fat and collagen content, sarcomere length, and proteolysis (desmin degradation) were measured and used to explain the variation in WBSF after 7 and 14 days of aging.
Key results
Meat from Hereford and Angus steers had higher WBSF after 7 days of aging compared with Wagyu × Angus steers, but after 14 days of aging there was only a difference between Hereford and Wagyu × Angus in the M. supraspinatus and M. semitendinosus. The WBSF of the young weaned steers and steers slaughtered after backgrounding were dependent on the degree of proteolysis in the muscles, whereas for steers slaughtered after feedlotting the content of collagen was more important for the WBSF. The amount of intramuscular fat had a significant impact on the differences in WBSF within the specific muscle studied. In contrast to the general dogma that WBSF increase with age, WBSF decreased in M. semitendinosus and M. longissimus lumborum from the weaned 6-month-old steers to the 25-month-old steers finished in feed-lot, whereas in M. supraspinatus the older feed-lot finished steers had a higher WBSF.
Conclusion
The factors contributing to the Warner-Bratzler shear force of beef depends on the age/feeding phase of the animal and the muscle and less on the breed type.
Implications
Optimisation of texture in beef through breeding and production should address different traits dependent on the age/feeding phase of the slaughter animal.
Collapse
|
12
|
The Effects of Age at Weaning and Length of Lipid Supplementation on Growth, Metabolites, and Marbling of Young Steers. Animals (Basel) 2020; 10:ani10101819. [PMID: 33036237 PMCID: PMC7600868 DOI: 10.3390/ani10101819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Consumers value quality beef and producers are starting to look at the ways production decisions affect the long-term performance of the animals. Early weaning is a production option in many beef cattle production environments. We are looking at the addition of rumen by-pass lipids in addition to early weaning to increase the marbling of steers. The supplementation of rumen protected lipids’ increased plasma concentrations of fatty acids. Supplementation of rumen-protected lipids improved carcass quality of young steers by increasing marbling scores and lipid concentration of steaks without negatively impacting dressing percentage. Therefore, a combination of early weaning and rumen by-pass lipid supplementation can be used as management practices to meet current consumer demands. Abstract The objective of this study was to determine how weaning age, days on supplements, and lipid supplementation affected the growth and marbling deposition of steers. Steers from a single sire were early weaned (n = 24) at 150 ± 11 days of age or traditionally weaned (n = 24) at 210 ± 11 days of age. Steers were assigned to control (n = 12/weaning group) or an isocaloric, isonitrogenous rumen by-pass lipid (RBL, n = 12/weaning group) for either 45 (n = 6/treatment) or 90 (n=6/treatment) days then harvested. Steer body weight (BW) was recorded on days −14 and −7, then BW and blood samples were collected on days 0, 22, 45, 66, and 90. The right rib section of each animal was collected for proximate analysis. Longissimus dorsi from RBL steers had increased lipids compared with control steers (3.6 ± 0.2 vs. 2.4 ± 0.2% on a wet basis; p < 0.0001). Steers fed for 90 days had greater (p = 0.02) concentrations of Longissimus dorsi lipid (3.3 ± 0.2%) than those fed for 45 days (2.7 ± 0.2%). There was a weaning age by treatment by days on feed interaction for intramuscular adipocyte diameter (p = 0.02) in which early weaned RBL fed for 90 days steers had an increased adipocyte diameter compared to the early weaned control fed for 90 and early weaned fed for 45 days steers with all other treatment groups as intermediates. Supplementation of RBL increased concentrations of C18:2, C20:4, and total fatty acids on days 45 and 90 (p ≤ 0.05). Data show that RBL supplementation increased the marbling content of the Longissimus dorsi. Furthermore, a longer period of supplementation resulted in increased adipose diameter.
Collapse
|
13
|
Live animal predictions of carcass components and marble score in beef cattle: model development and evaluation. Animal 2020; 14:s396-s405. [PMID: 32172725 DOI: 10.1017/s1751731120000324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Until recently, beef carcass payment grids were predominantly based on weight and fatness categories with some adjustment for age, defined as number of adult teeth, to determine the price received by Australian beef producers for slaughter cattle. With the introduction of the Meat Standards Australia (MSA) grading system, the beef industry has moved towards payments that account for intramuscular fat (IMF) content (marble score (MarbSc)) and MSA grades. The possibility of a payment system based on lean meat yield (LMY, %) has also been raised. The BeefSpecs suite of tools has been developed to assist producers to meet current market specifications, specifically P8-rump fat and hot standard carcass weight (HCW). A series of equations have now been developed to partition empty body fat and fat-free weight into carcass fat-free mass (FFM) and fat mass (FM) and then into flesh FFM (FleshFFM) and flesh FM (FleshFM) to predict carcass components from live cattle assessments. These components then predict denuded lean (kg) and finally LMY (%) that contribute to emerging market specifications. The equations, along with the MarbSc equation, are described and then evaluated using two independent datasets. The decomposition of evaluation datasets demonstrates that error in prediction of HCW (kg), bone weight (BoneWt, kg), FleshFFM (kg), FleshFM (kg), MarbSc and chemical IMF percentage (ChemIMF%) is shown to be largely random error (%) in evaluation dataset 1, though error for ChemIMF% was primarily slope bias (%) in evaluation dataset 1, and BoneWt had substantial mean bias (%) in evaluation dataset 2. High modelling efficiencies of 0.97 and 0.95 for predicting HCW for evaluation datasets 1 and 2, respectively, suggest a high level of accuracy and precision in the prediction of HCW. The new outputs of the model are then described as to their role in estimating MSA index scores. The modelling system to partition chemical components of the empty body into carcass components is not dependent on the base modelling system used to derive empty body FFM and FM. This can be considered a general process that could be used with any appropriate model of body composition.
Collapse
|
14
|
Hudson NJ, Reverter A, Griffiths WJ, Yutuc E, Wang Y, Jeanes A, McWilliam S, Pethick DW, Greenwood PL. Gene expression identifies metabolic and functional differences between intramuscular and subcutaneous adipocytes in cattle. BMC Genomics 2020; 21:77. [PMID: 31992204 PMCID: PMC6986065 DOI: 10.1186/s12864-020-6505-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/17/2020] [Indexed: 01/22/2023] Open
Abstract
Background This study used a genome-wide screen of gene expression to better understand the metabolic and functional differences between commercially valuable intramuscular fat (IMF) and commercially wasteful subcutaneous (SC) fat depots in Bos taurus beef cattle. Results We confirmed many findings previously made at the biochemical level and made new discoveries. The fundamental lipogenic machinery, such as ACACA and FASN encoding the rate limiting Acetyl CoA carboxylase and Fatty Acid synthase were expressed at 1.6–1.8 fold lower levels in IMF, consistent with previous findings. The FA elongation pathway including the rate limiting ELOVL6 was also coordinately downregulated in IMF compared to SC as expected. A 2-fold lower expression in IMF of ACSS2 encoding Acetyl Coenzyme A synthetase is consistent with utilisation of less acetate for lipogenesis in IMF compared to SC as previously determined using radioisotope incorporation. Reduced saturation of fat in the SC depot is reflected by 2.4 fold higher expression of the SCD gene encoding the Δ9 desaturase enzyme. Surprisingly, CH25H encoding the cholesterol 25 hydroxylase enzyme was ~ 36 fold upregulated in IMF compared to SC. Moreover, its expression in whole muscle tissue appears representative of the proportional representation of bovine marbling adipocytes. This suite of observations prompted quantification of a set of oxysterols (oxidised forms of cholesterol) in the plasma of 8 cattle exhibiting varying IMF. Using Liquid Chromatography-Mass Spectrometry (LC-MS) we found the levels of several oxysterols were significantly associated with multiple marbling measurements across the musculature, but (with just one exception) no other carcass phenotypes. Conclusions These data build on our molecular understanding of ruminant fat depot biology and suggest oxysterols represent a promising circulating biomarker for cattle marbling.
Collapse
Affiliation(s)
- Nicholas J Hudson
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, Australia.
| | - Antonio Reverter
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, Australia
| | - William J Griffiths
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Angela Jeanes
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Sean McWilliam
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, Australia
| | - David W Pethick
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Paul L Greenwood
- New South Wales Department of Primary Industries, Armidale Livestock Industries Centre, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
15
|
Yang LQ, Li J, Wang C, Wu QY, Chen XY, Lai SJ, Song TZ, Zhang M. Expression patterns of PPARγ2, PGC-1α, and MEF2C and their association with intramuscular fat content and skeletal muscle tenderness of crossbred Simmental bulls. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2017-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PPARγ2, PGC-1α, and MEF2C play an important role in skeletal muscle development and fat deposition. This study aimed to determine their mRNA expression levels in longissimus dorsi (Ld), semitendinosus (Se), and soleus (Sol) muscles of crossbred Simmental bulls and estimate their association with intramuscular fat (IMF) content and meat shear force (MSF). We measured the muscle fiber (MF) density and area, IMF content, and MSF of 6-, 12-, and 36-mo-old bulls. We found that the expression patterns differed with age: the PPARγ2 expression in the three muscles of 36-mo-old bulls was greater than that in the muscles of 6- and 12-mo-old bulls (P < 0.05). Furthermore, PGC-1α expression in Sol of 36-mo-old and MEF2C expression in Ld of 12-mo-old bulls were higher than those in the respective muscles of 6- and 12-mo-old bulls, and 6- and 36-mo-old bulls, respectively (P < 0.05). The MF area, IMF content, and MSF increased with age (P < 0.05). The PPARγ2 mRNA expression in Ld, Se, and Sol was positively correlated with MF area and IMF content (P < 0.05) and negatively correlated with MF density (P < 0.05). Thus, PPARγ2 might be a candidate marker, which is positively correlated with IMF content and MF area.
Collapse
Affiliation(s)
- Li-Qin Yang
- College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People’s Republic of China
| | - Jian Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People’s Republic of China
| | - Chun Wang
- College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People’s Republic of China
| | - Qiu-Ying Wu
- College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People’s Republic of China
| | - Xuan-Yu Chen
- College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People’s Republic of China
| | - Song-Jia Lai
- Institute of Animal Breeding and Genetic, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People’s Republic of China
| | - Tian-Zeng Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, Tibet 850009, People’s Republic of China
| | - Ming Zhang
- College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People’s Republic of China
| |
Collapse
|
16
|
Fu X, Li C, Liu Q, McMillin KW. GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: The regulation of beef quality by resident progenitor cells1. J Anim Sci 2019; 97:2658-2673. [PMID: 30982893 PMCID: PMC6541817 DOI: 10.1093/jas/skz111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
The intramuscular adipose tissue deposition in the skeletal muscle of beef cattle is a highly desired trait essential for high-quality beef. In contrast, the excessive accumulation of crosslinked collagen in intramuscular connective tissue contributes to beef toughness. Recent studies revealed that adipose tissue and connective tissue share an embryonic origin in mice and may be derived from a common immediate bipotent precursor in mice and humans. Having the same linkages in the development of adipose tissue and connective tissue in beef, the lineage commitment and differentiation of progenitor cells giving rise to these tissues may directly affect beef quality. It has been shown that these processes are regulated by some key transcription regulators and are subjective to epigenetic modifications such as DNA methylation, histone modifications, and microRNAs. Continued exploration of relevant regulatory pathways is very important for the identification of mechanisms influencing meat quality and the development of proper management strategies for beef quality improvement.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Kenneth W McMillin
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| |
Collapse
|
17
|
Koch BM, Pavan E, Andrae JG, Duckett SK. Timing of Exposure to High-Concentrates versus High-Quality Forages on Growth and Marbling Deposition in Steers. MEAT AND MUSCLE BIOLOGY 2018. [DOI: 10.22175/mmb2018.06.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Forty Angus-cross steers (280 ± 21.4 kg BW, 8 mo.) were used to examine the effects of exposure to 2 diets [high concentrate diets (CONC) versus high quality forages (FOR)] during 2 time periods [early (EARLY; at 30-d post weaning) or late (LATE; just prior to slaughter)] on animal growth, marbling deposition and tenderness. Steers were blocked by weight and randomly assigned to four dietary treatments: 1) CONC-FOR, 2) CONC-CONC, 3) FOR-CONC, or 4) FOR-FOR. Exposure to CONC during the EARLY or LATE period increased (P < 0.05) growth and fat deposition compared to FOR-FOR. Hot carcass weight was greater (P < 0.05) for CONC-CONC and FOR-CONC steers than FOR-FOR and CONC-FOR due to changes in dressing percent. Marbling score was greater (P < 0.05) for CONC-CONC and CONC-FOR compared to FOR-FOR. Exposure to CONC during the EARLY period (CONC-FOR and CONC-CONC) increased (P < 0.05) n-6 polyunsaturated fatty acids (PUFA) deposition in longissimus muscle (LM) and subcutaneous adipose tissue (SQ); whereas, exposure to CONC during the LATE period (CONC-CONC and FOR-CONC) reduced (P < 0.05) n-3 PUFA, trans-11 octadecenoic acid and cis-9 trans-11 isomer of conjugated linoleic acid (CLA). Warner-Bratzler shear force at d 2 and 7 of postmortem aging in ribeye steaks from CONC-CONC and FOR-CONC was greater (P < 0.05) than FOR-FOR and CONC-FOR. Lipogenic gene expression was up-regulated (P < 0.05) and lipolytic gene expression was downregulated (P < 0.06) in SQ from CONC-CONC and FOR-CONC compared to FOR-FOR. Overall, exposure to CONC in both periods increased growth rate and marbling deposition but LATE exposure had the greatest impact on adipose lipogenesis and lipolysis, fatty acid composition, and tenderness.
Collapse
Affiliation(s)
- Brandon M. Koch
- Clemson University Department of Animal and Veterinary Sciences
| | | | - John G. Andrae
- Clemson University Simpson Research and Education Center
| | | |
Collapse
|
18
|
Park SJ, Beak SH, Jung DJS, Kim SY, Jeong IH, Piao MY, Kang HJ, Fassah DM, Na SW, Yoo SP, Baik M. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1043-1061. [PMID: 29879830 PMCID: PMC6039335 DOI: 10.5713/ajas.18.0310] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
Intramuscular fat (IMF) content in skeletal muscle including the longissimus dorsi muscle (LM), also known as marbling fat, is one of the most important factors determining beef quality in several countries including Korea, Japan, Australia, and the United States. Genetics and breed, management, and nutrition affect IMF deposition. Japanese Black cattle breed has the highest IMF content in the world, and Korean cattle (also called Hanwoo) the second highest. Here, we review results of research on genetic factors (breed and sex differences and heritability) that affect IMF deposition. Cattle management factors are also important for IMF deposition. Castration of bulls increases IMF deposition in most cattle breeds. The effects of several management factors, including weaning age, castration, slaughter weight and age, and environmental conditions on IMF deposition are also reviewed. Nutritional factors, including fat metabolism, digestion and absorption of feed, glucose/starch availability, and vitamin A, D, and C levels are important for IMF deposition. Manipulating IMF deposition through developmental programming via metabolic imprinting is a recently proposed nutritional method to change potential IMF deposition during the fetal and neonatal periods in rodents and domestic animals. Application of fetal nutritional programming to increase IMF deposition of progeny in later life is reviewed. The coordination of several factors affects IMF deposition. Thus, a combination of several strategies may be needed to manipulate IMF deposition, depending on the consumer’s beef preference. In particular, stage-specific feeding programs with concentrate-based diets developed by Japan and Korea are described in this article.
Collapse
Affiliation(s)
- Seung Ju Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seok-Hyeon Beak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Da Jin Sol Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Yeob Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - In Hyuk Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Min Yu Piao
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyeok Joong Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Dilla Mareistia Fassah
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Weon Na
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seon Pil Yoo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institutes of Green Bio Science Technology, Pyeongchang 25354, Korea
| |
Collapse
|
19
|
Chung KY, Lee SH, Cho SH, Kwon EG, Lee JH. Current situation and future prospects for beef production in South Korea - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:951-960. [PMID: 29879831 PMCID: PMC6039330 DOI: 10.5713/ajas.18.0187] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/07/2018] [Indexed: 11/27/2022]
Abstract
Hanwoo cattle are an important food source in Korea and their supply can have a major impact on meat availability for Korean consumers. The Hanwoo population was 1.8 million head in 2005 and gradually increased to 2.6 million in 2015. Per capita beef consumption has also increased, to 11.6 kg per year in 2015, and is expected to continue to increase. Because intramuscular fat percentage is a critical contributor to meat quality, Hanwoo cattle are fed a high-energy corn-based diet for long fattening periods. Long fed diet causes significant alterations in fat percentage in the loin muscle and other areas of the carcass. However, these long feeding periods increase feeding costs and beef prices. Recently, there has been increased Korean consumer demand for lean beef which has less fat, but is tender and priced more reasonably. These consumer demands on the Korean beef industry are driving differing beef production systems and also changes to the beef grading methodology. Korean government has made a significant investment to select bulls with favorable production traits using progeny testing. Progeny tested bull semen has been disseminated to all Hanwoo farmers. A beef traceability system has been employed for all cattle breeds in Korea since 2009. Hanwoo cattle are ear-marked with a 12-digit identification number from birth to slaughter. This number allows traceability of the management history of individual cattle, and also provides information to consumers. Traceability including management information such as herd, farm, year of birth, and carcass data can determine estimated breeding values of Hanwoo. For a sustainable Hanwoo industry, research scientists in Korea have attempted to develop feeds for efficient fattening periods and precision feeding systems based on genetic information for Hanwoo cattle. These initiatives aim to Korean consumer demands for beef and provide more precision management in beef production in Korea.
Collapse
Affiliation(s)
- Ki Yong Chung
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25340, Korea
| | - Seung Hwan Lee
- Division of Animal & Daily Science, Chungnam National University, Daejeon 34148, Korea
| | - Soo Hyun Cho
- Division of Animal Production, National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Eung Gi Kwon
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25340, Korea
| | - Jun Heon Lee
- Division of Animal & Daily Science, Chungnam National University, Daejeon 34148, Korea
| |
Collapse
|