1
|
The Physiological Roles of Vitamin E and Hypovitaminosis E in the Transition Period of High-Yielding Dairy Cows. Animals (Basel) 2021; 11:ani11041088. [PMID: 33920342 PMCID: PMC8070221 DOI: 10.3390/ani11041088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary In high-yield cows, most production diseases occur during transition periods. Alpha-tocopherol, the most biologically active form of vitamin E, declines in blood and reaches the lowest levels (hypovitaminosis E) around calving. Hypovitaminosis E is associated with the incidence of peripartum diseases. Therefore, many studies which have been published for more than 30 years have investigated the effects of α-tocopherol supplementation. This α-tocopherol deficiency was thought to be caused by complex factors. However, until recently, the physiological factors or pathways underlying hypovitaminosis E in the transition period have been poorly understood. In the last 10 years, the α-tocopherol-related genes expression, which regulate the metabolism, transportation, and tissue distribution of α-tocopherol in humans and rodents, has been reported in ruminant tissues. In this paper, we discuss at least six physiological phenomena that occur during the transition period and may be candidate factors predisposing to a decreased blood α-tocopherol level and hypovitaminosis E with changes in α-tocopherol-related genes expression. Abstract Levels of alpha-tocopherol (α-Toc) decline gradually in blood throughout prepartum, reaching lowest levels (hypovitaminosis E) around calving. Despite numerous reports about the disease risk in hypovitaminosis E and the effect of α-Toc supplementation on the health of transition dairy cows, its risk and supplemental effects are controversial. Here, we present some novel data about the disease risk of hypovitaminosis E and the effects of α-Toc supplementation in transition dairy cows. These data strongly demonstrate that hypovitaminosis E is a risk factor for the occurrence of peripartum disease. Furthermore, a study on the effectiveness of using serum vitamin levels as biomarkers to predict disease in dairy cows was reported, and a rapid field test for measuring vitamin levels was developed. By contrast, evidence for how hypovitaminosis E occurred during the transition period was scarce until the 2010s. Pioneering studies conducted with humans and rodents have identified and characterised some α-Toc-related proteins, molecular players involved in α-Toc regulation followed by a study in ruminants from the 2010s. Based on recent literature, the six physiological factors: (1) the decline in α-Toc intake from the close-up period; (2) changes in the digestive and absorptive functions of α-Toc; (3) the decline in plasma high-density lipoprotein as an α-Toc carrier; (4) increasing oxidative stress and consumption of α-Toc; (5) decreasing hepatic α-Toc transfer to circulation; and (6) increasing mammary α-Toc transfer from blood to colostrum, may be involved in α-Toc deficiency during the transition period. However, the mechanisms and pathways are poorly understood, and further studies are needed to understand the physiological role of α-Toc-related molecules in cattle. Understanding the molecular mechanisms underlying hypovitaminosis E will contribute to the prevention of peripartum disease and high performance in dairy cows.
Collapse
|
2
|
Kuhn MJ, Mavangira V, Sordillo LM. Invited review: Cytochrome P450 enzyme involvement in health and inflammatory-based diseases of dairy cattle. J Dairy Sci 2020; 104:1276-1290. [PMID: 33358163 DOI: 10.3168/jds.2020-18997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Dairy cattle are at the greatest risk of developing diseases around the time of calving because of compromised immune responses and the occurrence of oxidative stress. Both the development of compromised immunity and oxidative stress are influenced directly or indirectly by the metabolism of polyunsaturated fatty acids (PUFA) and fat-soluble vitamins. The cytochrome P450 (CYP450) family of enzymes is central to the metabolism of both classes of these compounds, but to date, the importance of CYP450 in the health of dairy cattle is underappreciated. As certain CYP450 isoforms metabolize both PUFA and fat-soluble vitamins, potential interactions may occur between PUFA and fat-soluble vitamins that are largely unexplored. For example, one CYP450 that generates anti-inflammatory oxylipids from arachidonic acid additionally contributes to the activation of vitamin D. Other potential substrate interactions between PUFA and vitamins A and E may exist as well. The intersection of PUFA and fat-soluble vitamin metabolism by CYP450 suggest that this enzyme system could provide an understanding of how immune function and oxidant status interconnect, resulting in increased postpartum disease occurrence. This review will detail the known contributions of bovine CYP450 to the regulation of oxylipids with a focus on enzymes that may also be involved in the metabolism of fat-soluble vitamins A, D, and E that contribute to antioxidant defenses. Although the activity of specific CYP450 is generally conserved among mammals, important differences exist in cattle, such as the isoforms primarily responsible for activation of vitamin D that makes their specific study in cattle of great importance. Additionally, a CYP450-driven inflammatory positive feedback loop is proposed, which may contribute to the dysfunctional inflammatory responses commonly found during the transition period. Establishing the individual enzyme isoform contributions to oxylipid biosynthesis and the regulation of vitamins A, D, and E may reveal how the CYP450 family of enzymes can affect inflammatory responses during times of increased susceptibility to disease. Determining the potential effect of each CYP450 on disease susceptibility or pathogenesis may allow for the targeted manipulation of the CYP450 pathways to influence specific immune responses and antioxidant defenses during times of increased risk for health disorders.
Collapse
Affiliation(s)
- M J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - V Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
3
|
Kuhn MJ, Putman AK, Sordillo LM. Widespread basal cytochrome P450 expression in extrahepatic bovine tissues and isolated cells. J Dairy Sci 2019; 103:625-637. [PMID: 31677841 DOI: 10.3168/jds.2019-17071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023]
Abstract
Periparturient cattle face increased risk of both metabolic and infectious diseases. Factors contributing to this predisposition include oxidized polyunsaturated fatty acids, also known as oxylipids, whose production is altered during the periparturient period and in diseased cattle. Alterations in the production of oxylipids derived from cytochrome P450 (CYP450) enzymes are over-represented during times of increased disease risk and clinical disease, such as mastitis. Many of these same CYP450 enzymes additionally regulate metabolism of fat-soluble vitamins, such as A, D, and E. These vitamins are essential to maintaining immune health, yet circulating concentrations are diminished near calving. Despite this, a relatively small amount of research has focused on the roles of CYP450 enzymes outside of the liver. The aim of this paper is to describe the relative gene expression of 11 CYP450 in bovine tissues and common in vitro bovine cell models. Eight tissue samples were collected from 3 healthy dairy cows after euthanasia. In vitro samples included primary bovine aortic and mammary endothelial cells and immortalized bovine kidney and mammary epithelial cells. Quantitative real-time-PCR was carried out to assess basal transcript expression of CYP450 enzymes. Surprisingly, CYP450 mRNA was widely expressed in all tissue samples, with predominance in the liver. In vitro CYP450 expression was less robust, with several cell types lacking expression of specific CYP450 enzymes altogether. Overall, cell culture models did not reflect expression of tissue CYP450. However, when CYP450 were organized by activity, certain cell types consistently expressed specific functional groups. These data reveal the widespread expression of CYP450 in individual organs of healthy dairy cows. Widespread expression helps to explain previous evidence of significant changes in CYP450-mediated oxylipid production and fat-soluble vitamin metabolism in organ microenvironments during periods of oxidative stress or disease. As such, these data provide a foundation for targeted functional experiments aimed at understanding the activities of specific CYP450 and associated therapeutic potential during times of increased disease risk.
Collapse
Affiliation(s)
- M J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - A K Putman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
4
|
Haga S, Miyaji M, Nakano M, Ishizaki H, Matsuyama H, Katoh K, Roh SG. Changes in the expression of α-tocopherol-related genes in liver and mammary gland biopsy specimens of peripartum dairy cows. J Dairy Sci 2018; 101:5277-5293. [PMID: 29605316 DOI: 10.3168/jds.2017-13630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/17/2018] [Indexed: 11/19/2022]
Abstract
Blood α-tocopherol (α-Toc) concentrations decline gradually throughout the prepartum period, reaching the nadir after calving in dairy cows. The 6 α-Toc-related molecules [α-Toc transfer protein (TTPA); afamin; scavenger receptor class B, Type I; ATP-binding cassette transporter A1; tocopherol-associated protein (SEC14L2); and cytochrome P450 family 4, subfamily F, polypeptide 2 (CYP4F2)] are expressed in liver and other peripheral tissues. These molecules could regulate α-Toc transport, blood concentrations, and metabolism of α-Toc. Therefore, the aim of this study was to evaluate the changes in the expression of α-Toc-related genes in liver and mammary gland tissues of dairy cows around calving, which have remained elusive until now. In experiment (Exp.) 1, 28 multiparous Holstein cows were used (from -5 to 6 wk relative to parturition) to monitor the changes in dietary α-Toc intake, blood concentrations of α-Toc, and lipoproteins; in Exp. 2, 7 peripartum Holstein cows were used (from -4 to 4 wk relative to parturition) for liver tissue biopsy; and in Exp. 3, 10 peripartum Holstein cows were used (from -8 to 6 wk relative to parturition) to carry out the mammary gland tissue biopsy and milk sampling. In Exp. 1, the serum α-Toc concentrations declined gradually with decreasing amount of α-Toc intake and plasma high-density lipoprotein concentrations toward calving time. However, in the early lactation period after calving, serum α-Toc concentrations remained at a lower concentration despite the recovery of α-Toc intake and plasma high-density lipoprotein concentrations. In Exp. 2, just after calving, the TTPA, SEC14L2, afamin, and albumin mRNA expression levels in the liver were temporarily downregulated, and the hepatic mRNA levels of endoplasmic reticulum stress-induced unfolded protein response markers and acute-phase response marker increased at calving. In Exp. 3, the concentrations of α-Toc in colostrum were greater than those in precolostrum (samples were collected at wk -1 relative to parturition) and mature milk. The expression of TTPA, SEC14L2, and CYP4F2 mRNA in bovine mammary gland tissue was detected. However, TTPA and SEC14L2 mRNA expressions showed the opposite trends: the expression levels of TTPA mRNA peaked whereas SEC14L2 mRNA reached a nadir at calving. These results indicate that the expression of α-Toc-related genes involved in specific α-Toc transfer and metabolism in the liver and mammary gland are altered during calving. Moreover, these changes might be associated with the maintenance of lower serum α-Toc concentrations after calving.
Collapse
Affiliation(s)
- S Haga
- Grassland Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan.
| | - M Miyaji
- Animal Feeding and Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - M Nakano
- Grassland Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - H Ishizaki
- Grassland Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - H Matsuyama
- Animal Feeding and Management Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768, Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - K Katoh
- Lab of Animal Physiology, Graduate School of Agriculture Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - S G Roh
- Lab of Animal Physiology, Graduate School of Agriculture Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|