1
|
Lee CY, Lee EY, Park TW, Jeong YH, Son YM, Oh SH, Joo ST, Jang JC. Effects of an extra-high slaughter weight and a low-lysine diet on growth and meat quality of finishing gilts. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1137-1148. [PMID: 39691621 PMCID: PMC11647407 DOI: 10.5187/jast.2023.e108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/19/2024]
Abstract
The present study aimed to find out the feasibility of increasing the meat quality of finishing gilts by increasing their slaughter weight (SW) to an extra-high (XH) level and also by using a low-lysine (lys) diet in XH-weight pig production. Twenty-four gilts and eights barrows were divided into four treatments (T) by gender, SW, and diet: T1 (barrow; 116-kg SW; Medium [Med]-lys [0.80%] diet), T2 (gilt; 116-kg SW; Med-lys), T3 (gilt; XH [150 kg] SW; Med-lys), and T4 (gilt; XH SW, Low-lys [0.60%]). Growth performance from 85 kg of body weight to SW was measured only for T3 and T4. All animals were slaughtered at their target SW, followed by physicochemical analyses and sensory evaluation on the Longissimus lumborum muscle (LL). Average daily gain did not differ between T3 and T4. Dressing percentage was greater for T3 vs. T2. Backfat thickness was greater for T1 vs. T2 and T3 vs. T2, not being different between T3 and T4. The LL pH was lower and Warner-Bratzler Shear force value was greater for T3 vs. T2. Other physicochemical measurements including the intramuscular fat content were not different or different narrowly if different at all (p < 0.05) between T3 and T2 or T4, but not between T1 and T2. The percentages of major fatty acids including 16:0, 18:0, 18:1, and 18:2 in LL, which did not differ between T2 and T3, differed between T3 and T4 apparently resulting from a difference in composition of the ingredients of the two diets. The sensory texture score was greater for T3 vs. T2 in fresh LL; in cooked LL, juiciness and umami scores were greater for T3 vs. T2, flavor score being less for T4 vs. T3. The gender effects on physicochemical and sensory pork quality were small, if any. Overall, the meat quality of finishing gilts could be improved by increasing the SW to the XH level, but not by using the Low-lys diet, suggesting that it will be feasible to produce XH-weight market gilts if the increased meat quality can make up for the expected decrease in production efficiency accompanying the increased SW.
Collapse
Affiliation(s)
- Chul Young Lee
- Department of Animal Resources Technology, Gyeongsang National University, Jinju 52725, Korea
| | - Eun-Yeong Lee
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Tae-Whan Park
- Department of Animal Resources Technology, Gyeongsang National University, Jinju 52725, Korea
| | - Yeon-Hae Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Yu-Min Son
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Korea
| | - Seon-Tea Joo
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Cheol Jang
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
2
|
Wen C, Wang Q, Gu S, Jin J, Yang N. Emerging perspectives in the gut-muscle axis: The gut microbiota and its metabolites as important modulators of meat quality. Microb Biotechnol 2024; 17:e14361. [PMID: 37902307 PMCID: PMC10832551 DOI: 10.1111/1751-7915.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
Animal breeding has made great genetic progress in increasing carcass weight and meat yield in recent decades. However, these improvements have come at the expense of meat quality. As the demand for meat quantity continues to rise, the meat industry faces the great challenge of maintaining and even increasing product quality. Recent research, including traditional statistical analyses and gut microbiota regulation research, has demonstrated that the gut microbiome exerts a considerable effect on meat quality, which has become increasingly intriguing in farm animals. Microbial metabolites play crucial roles as substrates or signalling factors to distant organs, influencing meat quality either beneficially or detrimentally. Interventions targeting the gut microbiota exhibit excellent potential as natural ways to foster the conversion of myofibres and promote intramuscular fat deposition. Here, we highlight the emerging roles of the gut microbiota in various dimensions of meat quality. We focus particularly on the effects of the gut microbiota and gut-derived molecules on muscle fibre metabolism and intramuscular fat deposition and attempt to summarize the potential underlying mechanisms.
Collapse
Affiliation(s)
- Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversityHainanChina
| | - Qunpu Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversityHainanChina
| |
Collapse
|
3
|
São José GLF, Nuñez AJC, Gomes JD, Schinckel AP, Cesar ASM, Luchiari Filho A, do Carmo AS, Brito LF, de Almeida VV. Production and meat quality traits of genetically lean immunocastrated pigs naturally divergent for loin tenderness. Trop Anim Health Prod 2023; 56:22. [PMID: 38123841 DOI: 10.1007/s11250-023-03875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Warner-Bratzler Shear Force (WBSF) is a quantitative measurement of meat toughness that has great impact on the consumer acceptability of meat. This study was conducted to evaluate growth performance, carcass and meat quality characteristics, and fatty acids profile of longissimus lumborum (LL) intramuscular fat (IMF) of pigs that are genetically divergent for WBSF. Based on WBSF values of the LL from a previous study, 12 immunocastrated male pigs selected from 96 pigs were divided into two groups with high WBSF (53.28 to 42.50 N) and low WBSF (37.27 to 27.79 N). Although high-WBSF pigs tended to have improved (P = 0.08) gain-to-feed ratio, overall performance was similar between WBSF groups. High-WBSF pigs also tended to have higher (P = 0.09) cooling loss and lean percentage as well as decreased (P = 0.08) 10th-rib backfat depth than low-WBSF pigs. Loins from high-WBSF pigs tended to have lower (P = 0.07) IMF content and higher (P = 0.09) cooking loss than low-WBSF pigs. Compared to low-WBSF pigs, IMF of the LL from high-WBSF pigs had lower (P = 0.05) percentage of oleic acid and tended to have a decreased (P = 0.07) percentage of total monounsaturated fatty acids. Loins from pigs with high WBSF tended to have increased (P = 0.09) total polyunsaturated fatty acids (PUFA) content and had higher (P = 0.03) PUFA: saturated fatty acid ratio than low-WBSF pigs. Selecting pigs for pork tenderness could potentially conflict with lean growth efficiency and a healthier fatty acids profile for human consumption.
Collapse
Affiliation(s)
| | | | - Julia Dezen Gomes
- Department of Agri-Food Industry, Food, and Nutrition, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Aline Silva Mello Cesar
- Department of Agri-Food Industry, Food, and Nutrition, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Albino Luchiari Filho
- Department of Agri-Food Industry, Food, and Nutrition, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | | | | |
Collapse
|
4
|
Molinero E, Pena RN, Estany J, Ros‐Freixedes R. Identification of a missense variant in the porcine AGPAT gene family associated with intramuscular fat content through whole-genome sequencing. Anim Genet 2022; 53:782-793. [PMID: 36108237 PMCID: PMC9826064 DOI: 10.1111/age.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
The 1-acylglycerol-3-phosphate O-acyltransferases (AGPATs) are enzymes that catalyze the conversion of lysophosphatidic acid to phosphatidic acid, which is a precursor of triacylglycerol, the main fat reservoir in mammals. We used whole-genome sequencing of 205 pigs to identify 6639 genetic variants in the porcine AGPAT gene family. Of these, 166 common variants in the AGPAT5 gene had significant associations with fat content and composition traits. We preselected a missense single nucleotide polymorphism in exon 6 of AGPAT5 (rs196952262, A>G) for validation of its associations in 1034 pigs from the same Duroc line. The A allele showed a positive additive effect for intramuscular fat content (+1.12% ± 0.21, p < 0.001, for gluteus medius and +0.89% ± 0.33, p < 0.01, for longissimus). We also observed significant associations with fatty acid composition that were, at least in part, independent of the increased intramuscular fat. The A allele resulted in more monounsaturated fatty acids (+0.34% ± 0.15, p < 0.05, for longissimus) and a greater monounsaturated/polyunsaturated fatty acids ratio (+0.11 ± 0.04, p < 0.01, for gluteus medius and +0.13 ± 0.05, p < 0.05, for longissimus). The effect of the AGPAT5 variant on intramuscular fat was more noticeable in fatter pigs, and AGPAT5 interacts with other genes that affect overall fatness such as LEPR. AGPAT5 was the most expressed gene of the AGPAT family in pig skeletal muscle. This variant can be used as a marker in assisted selection for modulating pig fat deposition and fatty acid content.
Collapse
Affiliation(s)
- Eduard Molinero
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| | - Ramona N. Pena
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| | - Joan Estany
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| | - Roger Ros‐Freixedes
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| |
Collapse
|
5
|
Salavati M, Woolley SA, Cortés Araya Y, Halstead MM, Stenhouse C, Johnsson M, Ashworth CJ, Archibald AL, Donadeu FX, Hassan MA, Clark EL. Profiling of open chromatin in developing pig (Sus scrofa) muscle to identify regulatory regions. G3 (BETHESDA, MD.) 2022; 12:6460335. [PMID: 34897420 PMCID: PMC9210303 DOI: 10.1093/g3journal/jkab424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
There is very little information about how the genome is regulated in domestic pigs (Sus scrofa). This lack of knowledge hinders efforts to define and predict the effects of genetic variants in pig breeding programs. To address this knowledge gap, we need to identify regulatory sequences in the pig genome starting with regions of open chromatin. We used the "Improved Protocol for the Assay for Transposase-Accessible Chromatin (Omni-ATAC-Seq)" to identify putative regulatory regions in flash-frozen semitendinosus muscle from 24 male piglets. We collected samples from the smallest-, average-, and largest-sized male piglets from each litter through five developmental time points. Of the 4661 ATAC-Seq peaks identified that represent regions of open chromatin, >50% were within 1 kb of known transcription start sites. Differential read count analysis revealed 377 ATAC-Seq defined genomic regions where chromatin accessibility differed significantly across developmental time points. We found regions of open chromatin associated with downregulation of genes involved in muscle development that were present in small-sized fetal piglets but absent in large-sized fetal piglets at day 90 of gestation. The dataset that we have generated provides a resource for studies of genome regulation in pigs and contributes valuable functional annotation information to filter genetic variants for use in genomic selection in pig breeding programs.
Collapse
Affiliation(s)
- Mazdak Salavati
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Shernae A Woolley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Yennifer Cortés Araya
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Michelle M Halstead
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Claire Stenhouse
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Cheryl J Ashworth
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Francesc X Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Musa A Hassan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
6
|
Solé E, González-Prendes R, Oliinychenko Y, Tor M, Ros-Freixedes R, Estany J, Pena RN. Transcriptome shifts triggered by vitamin A and SCD genotype interaction in Duroc pigs. BMC Genomics 2022; 23:16. [PMID: 34991486 PMCID: PMC8739656 DOI: 10.1186/s12864-021-08244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The composition of intramuscular fat depends on genetic and environmental factors, including the diet. In pigs, we identified a haplotype of three SNP mutations in the stearoyl-coA desaturase (SCD) gene promoter associated with higher content of monounsaturated fatty acids in intramuscular fat. The second of these three SNPs (rs80912566, C > T) affected a putative retinol response element in the SCD promoter. The effect of dietary vitamin A restriction over intramuscular fat content is controversial as it depends on the pig genetic line and the duration of the restriction. This study aims to investigate changes in the muscle transcriptome in SCD rs80912566 TT and CC pigs fed with and without a vitamin A supplement during the fattening period. RESULTS Vitamin A did not affect carcass traits or intramuscular fat content and fatty acid composition, but we observed an interaction between vitamin A and SCD genotype on the desaturation of fatty acids in muscle. As reported before, the SCD-TT pigs had more monounsaturated fat than the SCD-CC animals. The diet lacking the vitamin A supplement enlarged fatty acid compositional differences between SCD genotypes, partly because vitamin A had a bigger effect on fatty acid desaturation in SCD-CC pigs (positive) than in SCD-TT and SCD-TC animals (negative). The interaction between diet and genotype was also evident at the transcriptome level; the highest number of differentially expressed genes were detected between SCD-TT pigs fed with the two diets. The genes modulated by the diet with the vitamin A supplement belonged to metabolic and signalling pathways related to immunity and inflammation, transport through membrane-bounded vesicles, fat metabolism and transport, reflecting the impact of retinol on a wide range of metabolic processes. CONCLUSIONS Restricting dietary vitamin A during the fattening period did not improve intramuscular fat content despite relevant changes in muscle gene expression, both in coding and non-coding genes. Vitamin A activated general pathways of retinol response in a SCD genotype-dependant manner, which affected the monounsaturated fatty acid content, particularly in SCD-CC pigs.
Collapse
Affiliation(s)
- Emma Solé
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25197, Lleida, Spain
| | - Rayner González-Prendes
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25197, Lleida, Spain.,Animal Breeding and Genomics, Wageningen University & Research, 6708PB, Wageningen, The Netherlands
| | | | - Marc Tor
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25197, Lleida, Spain
| | - Roger Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25197, Lleida, Spain
| | - Joan Estany
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25197, Lleida, Spain
| | - Ramona N Pena
- Departament de Ciència Animal, Universitat de Lleida - AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25197, Lleida, Spain.
| |
Collapse
|
7
|
Zhang Z, Liao Q, Sun Y, Pan T, Liu S, Miao W, Li Y, Zhou L, Xu G. Lipidomic and Transcriptomic Analysis of the Longissimus Muscle of Luchuan and Duroc Pigs. Front Nutr 2021; 8:667622. [PMID: 34055857 PMCID: PMC8154583 DOI: 10.3389/fnut.2021.667622] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023] Open
Abstract
Meat is an essential food, and pork is the largest consumer meat product in China and the world. Intramuscular fat has always been the basis for people to select and judge meat products. Therefore, we selected the Duroc, a western lean pig breed, and the Luchuan, a Chinese obese pig breed, as models, and used the longissimus dorsi muscle for lipidomics testing and transcriptomics sequencing. The purpose of the study was to determine the differences in intramuscular fat between the two breeds and identify the reasons for the differences. We found that the intramuscular fat content of Luchuan pigs was significantly higher than that of Duroc pigs. The triglycerides and diglycerides related to flavor were higher in Luchuan pigs compared to Duroc pigs. This phenotype may be caused by the difference in the expression of key genes in the glycerolipid metabolism signaling pathway.
Collapse
Affiliation(s)
- Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qichao Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yu Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tingli Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weiwei Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Gaoxiao Xu
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| |
Collapse
|
8
|
Solé E, Ros-Freixedes R, Tor M, Reixach J, Pena RN, Estany J. Antagonistic maternal and direct effects of the leptin receptor gene on body weight in pigs. PLoS One 2021; 16:e0246198. [PMID: 33508034 PMCID: PMC7842917 DOI: 10.1371/journal.pone.0246198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Maternal effects on offspring growth can impact survival and evolution of natural and domesticated populations. Genetic correlation estimates often support a negative relationship between direct and maternal effects. However, the genetic underpinnings whereby this antagonism operates are unclear. In pigs, sow feeding status and body composition condition piglet development and growth. We hypothesized that variants in genes impacting these traits may be causative of maternal influences that could be antagonistic to the direct effects for piglet growth. A recessive missense mutation (C>T) in the porcine leptin receptor (LEPR) gene (rs709596309) has been identified as the possible causal polymorphism for increased feed intake and fatness. Using data from a Duroc line, we show that the TT sows exerted a negative impact on the body weight of their offspring at the end of the growing period of similar extent to the positive direct effect of the TT genotype over each individual. Thus, TT pigs from TT dams were about as heavy as CC and CT (C–) pigs from C–dams, but TT pigs from C–dams were around 5% heavier than C–pigs from TT dams. In contrast, body composition was only influenced by LEPR direct effects. This antagonism is due to a higher propensity of TT pigs for self-maintenance rather than for offspring investment. We show that TT pigs consumed more feed, favored fatty acid uptake over release, and produced lighter piglets at weaning than their C–counterparts. We conclude that LEPR underlies a transgenerational mechanism for energy distribution that allocates resources to the sow or the offspring according to whether selective pressure is exerted before or after weaning.
Collapse
Affiliation(s)
- Emma Solé
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Roger Ros-Freixedes
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Marc Tor
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Josep Reixach
- Selección Batallé S.A., Riudarenes, Catalonia, Spain
| | - Ramona N Pena
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Joan Estany
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| |
Collapse
|
9
|
Bruce JH. The technological challenges of reducing the saturated fat content of foods. NUTR BULL 2020. [DOI: 10.1111/nbu.12452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Fu Y, Wang L, Tang Z, Yin D, Xu J, Fan Y, Li X, Zhao S, Liu X. An integration analysis based on genomic, transcriptomic and QTX information reveals credible candidate genes for fat-related traits in pigs. Anim Genet 2020; 51:683-693. [PMID: 32557818 DOI: 10.1111/age.12971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Meat quality improvement is of great interest to researchers in pig breeding and many researchers have identified abundant associated quantitative trait loci, genes and polymorphisms (QTXs) for fat-related traits. However, it is challenging to determine credible candidate genes from a mass of associations. The efficiency of identification of credible candidate genes in these QTXs is restricted by limited integration analyses of data from multiple omics. In this study, we constructed a 'candidate gene map' of fat-related traits in pigs based on published literature and the latest genome. In total, 6,861 QTXs, which covered 9,323 genes on the pig genome, were used. Combining the QTX hotspots and pathway analysis, we identified 180 candidate genes that may regulate the fat-related traits, and choose PNPLA2, PPARG, SREBF1, ACACA, PPARD and PPARA as credible candidate genes. In addition, we discussed the importance of incorporating transcriptome data and genomic data in causal gene identification, and the multi-omics information can effectively improve the credibility of identified candidate genes.
Collapse
Affiliation(s)
- Y Fu
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei, 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - L Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Z Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - D Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - J Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Y Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - X Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - S Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - X Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
11
|
Gol S, González-Prendes R, Bosch L, Tor M, Reixach J, Pena RN, Estany J. Linoleic acid metabolic pathway allows for an efficient increase of intramuscular fat content in pigs. J Anim Sci Biotechnol 2019; 10:33. [PMID: 31080594 PMCID: PMC6503358 DOI: 10.1186/s40104-019-0343-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Background Intramuscular fat (IMF) content is a relevant trait for high-quality meat products such as dry-cured ham, but increasing IMF has the undesirable correlated effect of decreasing lean growth. Thus, there is a need to find selection criteria for IMF independent from lean growth. In pigs, the proportion of linoleic (C18:2) and arachidonic (C20:4) acids decline with fat deposition and therefore they can be considered as indicators of fatness. The aim of this research was to estimate the genetic variation for C18:2 and C20:4 in IMF and their genetic correlations with IMF and lean growth traits, with the objective to assess their potential as specific biomarkers of IMF. The analysis was conducted using a full-pedigreed Duroc resource line with 91,448 records of body weight and backfat thickness (BT) at 180 days of age and 1371 records of fatty acid composition in the muscle gluteus medius. Results The heritability estimates for C18:2 and C20:4 in IMF, whether expressed in absolute (mg/g of muscle) or in relative (mg/g of fatty acid) terms, as well as for their ratio (C20:4/C18:2), were high (> 0.40), revealing that the C18:2 to C20:4 pathway is subjected to substantial genetic influence. Litter effects were not negligible, with values ranging from 8% to 15% of the phenotypic variance. The genetic correlations of C18:2 and C20:4 with IMF and BT were negative (- 0.75 to - 0.66, for IMF, and - 0.64 to - 0.36, for BT), if expressed in relative values, but almost null (- 0.04 to 0.07), if expressed in absolute values, except for C18:2 with IMF, which was highly positive (0.88). The ratio of C20:4 to C18:2 also displayed a stronger genetic correlation with IMF (- 0.59) than with BT (- 0.10). Conclusions The amount of C18:2 in muscle can be used as an IMF-specific biomarker. Selection for the absolute amount of C18:2 is expected to deliver a similar response outcome as selection for IMF at restrained BT. Further genetic analysis of the C18:2 metabolic pathway may provide new insights into differential fat deposition among adipose tissues and on candidate genes for molecular markers targeting specifically for one of them.
Collapse
Affiliation(s)
- Sofia Gol
- 1Department of Animal Science, Universitat de Lleida - Agrotecnio Center, 191 Rovira Roure, 25198 Lleida, Catalonia Spain
| | - Rayner González-Prendes
- 1Department of Animal Science, Universitat de Lleida - Agrotecnio Center, 191 Rovira Roure, 25198 Lleida, Catalonia Spain
| | - Lluís Bosch
- 2Department of Chemical, Agricultural and Food Technology Engineering, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia Spain
| | - Marc Tor
- 1Department of Animal Science, Universitat de Lleida - Agrotecnio Center, 191 Rovira Roure, 25198 Lleida, Catalonia Spain
| | - Josep Reixach
- Selección Batallé S.A., Av. Segadors s/n, 17421 Riudarenes, Catalonia Spain
| | - Ramona N Pena
- 1Department of Animal Science, Universitat de Lleida - Agrotecnio Center, 191 Rovira Roure, 25198 Lleida, Catalonia Spain
| | - Joan Estany
- 1Department of Animal Science, Universitat de Lleida - Agrotecnio Center, 191 Rovira Roure, 25198 Lleida, Catalonia Spain
| |
Collapse
|