1
|
Hernandez M, Ghislin S, Lalonde R, Strazielle C. Corticosterone effects on postnatal cerebellar development in mice. Neurochem Int 2023; 171:105611. [PMID: 37704081 DOI: 10.1016/j.neuint.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Glucocorticoids administered early in infancy can affect the architectonic organization of brain structures, particularly those with a postnatal development and resulting in long-term deficits of neuromotor function and cognition. The present study was undertaken to study the effects of daily corticosterone (CORT) injections at a pharmacological dose from postnatal days 8-15 on cerebellar and hippocampal development in mouse pups. Gene expression status for trophic factors involved in synaptic development and function as well as measures of layer thickness associated with cytochrome oxidase labelling were analyzed in the hippocampus, hypothalamus, and specific cerebellar lobules involved in motor control. Repeated CORT injections dysregulated the HPA axis with increased Crh and Nr3c1 mRNA levels in the hypothalamus and a resulting higher serum corticosterone level. The CORT treatment altered the morphology of the hippocampus and down-regulated gene transcription for corticotropin-releasing hormone (Crh) and its type-1 receptor (Crhr1), glucocorticoid receptor (Nr3c1), and brain-derived neurotrophic factor Bdnf and its receptor Ntrk2 (neurotrophic receptor tyrosine kinase 2). Similar mRNA expression decreases were found in the cerebellum for Crhr1, Crhr2, Nr3c1, and Grid2 (glutamatergic δ2 receptor). Morphological alterations and metabolic activity variations were observed in specific cerebellar lobules involved in motor control. The paramedian lobule, normally characterized by mitotic activity in the external germinative layer during the second postnatal week, was atrophic but metabolically hyperactive in its granule cell and molecular layers. On the contrary, lobules with an earlier cell proliferation displayed neurogenesis but a hypoactivated granule cell layer, suggesting a developmental delay in synaptogenesis. The results indicate that glucocorticoid, administered daily during the second postnatal week modulated the developmental programming of the hippocampus and cerebellum. These growth and metabolic alterations may lead possibly to morphological and functional changes later in life.
Collapse
Affiliation(s)
- M Hernandez
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| | - S Ghislin
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - R Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - C Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
2
|
Moreno-Rius J. The cerebellum under stress. Front Neuroendocrinol 2019; 54:100774. [PMID: 31348932 DOI: 10.1016/j.yfrne.2019.100774] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/22/2022]
Abstract
Stress-related psychiatric conditions are one of the main causes of disability in developed countries. They account for a large portion of resource investment in stress-related disorders, become chronic, and remain difficult to treat. Research on the neurobehavioral effects of stress reveals how changes in certain brain areas, mediated by a number of neurochemical messengers, markedly alter behavior. The cerebellum is connected with stress-related brain areas and expresses the machinery required to process stress-related neurochemical mediators. Surprisingly, it is not regarded as a substrate of stress-related behavioral alterations, despite numerous studies that show cerebellar responsivity to stress. Therefore, this review compiles those studies and proposes a hypothesis for cerebellar function in stressful conditions, relating it to stress-induced psychopathologies. It aims to provide a clearer picture of stress-related neural circuitry and stimulate cerebellum-stress research. Consequently, it might contribute to the development of improved treatment strategies for stress-related disorders.
Collapse
|
3
|
Maternal physical activity-induced adaptive transcriptional response in brain and placenta of mothers and rat offspring. J Dev Orig Health Dis 2019; 11:108-117. [PMID: 31203831 DOI: 10.1017/s2040174419000333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal physical activity induces brain functional changes and neuroplasticity, leading to an improvement of cognitive functions, such as learning and memory in the offspring. This study investigated the effects of voluntary maternal physical activity on the gene expression of the neurotrophic factors (NTFs): BDNF, NTF4, NTRK2, IGF-1 and IGF-1r in the different areas of mother's brain, placenta and foetus brain of rats. Female Wistar rats (n = 15) were individually housed in voluntary physical activity cages, containing a running wheel, for 4 weeks (period of adaptation) before gestation. Rats were classified as inactive (I, n = 6); active (A, n = 4) and very active (VA, n = 5) according to daily distance spontaneously travelled. During gestation, the dams continued to have access to the running wheel. At the 20th day of gestation, gene expression of NTFs was analysed in different areas of mother's brain (cerebellum, hypothalamus, hippocampus and cortex), placenta and the offspring's brain. NTFs gene expression was evaluated using quantitative PCR. Very active mothers showed upregulation of IGF-1 mRNA in the cerebellum (36.8%) and NTF4 mRNA expression in the placenta (24.3%). In the cortex, there was a tendency of up-regulation of NTRK2 mRNA (p = 0.06) in the A and VA groups when compared to I group. There were no noticeable changes in the gene expression of NTFs in the offspring's brain. Our findings suggest the existence of a developmental plasticity induced by maternal physical activity in specific areas of the brain and placenta representing the first investment for offspring during development.
Collapse
|
4
|
Pomytkin I, Costa‐Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev ED, Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24:763-774. [PMID: 29691988 PMCID: PMC6489906 DOI: 10.1111/cns.12866] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - João P. Costa‐Nunes
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Faculdade de Medicina de LisboaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Vladimir Kasatkin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
| | - Ekaterina Veniaminova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Anna Demchenko
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey Lyundup
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Klaus‐Peter Lesch
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of Molecular PsychiatryCenter of Mental HealthClinical Research Unit on Disorders of Neurodevelopment and CognitionUniversity of WürzburgWürzburgGermany
| | - Eugene D. Ponomarev
- Faculty of MedicineSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Tatyana Strekalova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
5
|
Oliveira C, Scarabelot VL, Vercelino R, Silveira NP, Adachi LN, Regner GG, Silva LS, Macedo IC, Souza A, Caumo W, Torres IL. Morphine exposure and maternal deprivation during the early postnatal period alter neuromotor development and nerve growth factor levels. Int J Dev Neurosci 2017; 63:8-15. [DOI: 10.1016/j.ijdevneu.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Carla Oliveira
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduaçăo em Medicina: Ciências MédicasFaculdade de MedicinaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Vanessa L. Scarabelot
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Rafael Vercelino
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Centro Universitário FADERGSPorto AlegreRSBrazil
- Health and Wellness School Laureate International Universities
| | - Natalia P. Silveira
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Lauren N.S. Adachi
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduaçăo em Medicina: Ciências MédicasFaculdade de MedicinaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Gabriela G. Regner
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Lisiane S. Silva
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Isabel Cristina Macedo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Universidade Federal do PampaAvenida Antônio Trilha, 184797300‐000São GabrielRSBrazil
| | - Andressa Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Wolnei Caumo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduaçăo em Medicina: Ciências MédicasFaculdade de MedicinaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Iraci L.S. Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduaçăo em Medicina: Ciências MédicasFaculdade de MedicinaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| |
Collapse
|
6
|
Banqueri M, Méndez M, Arias JL. Behavioral effects in adolescence and early adulthood in two length models of maternal separation in male rats. Behav Brain Res 2017; 324:77-86. [DOI: 10.1016/j.bbr.2017.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
|
7
|
Bondar NP, Merkulova TI. Brain-derived neurotrophic factor and early-life stress: Multifaceted interplay. J Biosci 2017; 41:751-758. [PMID: 27966494 DOI: 10.1007/s12038-016-9648-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and plasticity. Longterm changes in the BDNF pathway are associated with childhood adversity and adult depression symptoms. Initially, stress-induced decreases in the BDNF pathway were found in some studies, but subsequent reports indicated the relationship between stress and BDNF to be much more complex, and the concept was significantly revised. In the present mini-review, we focus on the structure and regulation of the Bbnf gene as well as on the stress-BDNF interactions under early-life adverse conditions.
Collapse
Affiliation(s)
- Natalya P Bondar
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,
| | | |
Collapse
|
8
|
Daskalakis NP, De Kloet ER, Yehuda R, Malaspina D, Kranz TM. Early Life Stress Effects on Glucocorticoid-BDNF Interplay in the Hippocampus. Front Mol Neurosci 2015; 8:68. [PMID: 26635521 PMCID: PMC4644789 DOI: 10.3389/fnmol.2015.00068] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA
| | - Edo Ronald De Kloet
- Department of Medical Pharmacology, Leiden Academic Centre for Drug Research Leiden, Netherlands ; Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden University Leiden, Netherlands
| | - Rachel Yehuda
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Dolores Malaspina
- Department of Psychiatry, New York University School of Medicine New York, NY, USA
| | - Thorsten M Kranz
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University New York, NY, USA
| |
Collapse
|
9
|
Miki T, Liu JQ, Ohta KI, Suzuki S, Kusaka T, Warita K, Yokoyama T, Jamal M, Ueki M, Yakura T, Tamai M, Sumitani K, Hosomi N, Takeuchi Y. Early postnatal maternal separation causes alterations in the expression of β3-adrenergic receptor in rat adipose tissue suggesting long-term influence on obesity. Biochem Biophys Res Commun 2013; 442:68-71. [PMID: 24220331 DOI: 10.1016/j.bbrc.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/02/2013] [Indexed: 01/11/2023]
Abstract
The effects of early postnatal maternal deprivation on the biological characteristics of the adipose tissue later in life were investigated in the present study. Sprague-Dawley rats were classified as either maternal deprivation (MD) or mother-reared control (MRC) groups. MD was achieved by separating the rat pups from their mothers for 3h each day during the 10-15 postnatal days. mRNA levels of mitochondrial uncoupling protein 1 (UCP-1), β3-adrenergic receptor (β3-AR), and prohibitin (PHB) in the brown and white adipose tissue were determined using real-time RT-PCR analysis. UCP-1, which is mediated through β3-AR, is closely involved in the energy metabolism and expenditure. PHB is highly expressed in the proliferating tissues/cells. At 10 weeks of age, the body weight of the MRC and MD rats was similar. However, the levels of the key molecules in the adipose tissue were substantially altered. There was a significant increase in the expression of PHB mRNA in the white adipose tissue, while the β3-AR mRNA expression decreased significantly, and the UCP-1 mRNA expression remained unchanged in the brown adipose tissue. Given that these molecules influence the mitochondrial metabolism, our study indicates that early postnatal maternal deprivation can influence the fate of adipose tissue proliferation, presumably leading to obesity later in life.
Collapse
Affiliation(s)
- Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|