1
|
Ahmad I, Pawara R, Surana S, Patel H. The Repurposed ACE2 Inhibitors: SARS-CoV-2 Entry Blockers of Covid-19. Top Curr Chem (Cham) 2021; 379:40. [PMID: 34623536 PMCID: PMC8498772 DOI: 10.1007/s41061-021-00353-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
The highly infectious disease COVID-19 is induced by SARS-coronavirus 2 (SARS-CoV-2), which has spread rapidly around the globe and was announced as a pandemic by the World Health Organization (WHO) in March 2020. SARS-CoV-2 binds to the host cell's angiotensin converting enzyme 2 (ACE2) receptor through the viral surface spike glycoprotein (S-protein). ACE2 is expressed in the oral mucosa and can therefore constitute an essential route for entry of SARS-CoV-2 into hosts through the tongue and lung epithelial cells. At present, no effective treatments for SARS-CoV-2 are yet in place. Blocking entry of the virus by inhibiting ACE2 is more advantageous than inhibiting the subsequent stages of the SARS-CoV-2 life cycle. Based on current published evidence, we have summarized the different in silico based studies and repurposing of anti-viral drugs to target ACE2, SARS-CoV-2 S-Protein: ACE2 and SARS-CoV-2 S-RBD: ACE2. This review will be useful to researchers looking to effectively recognize and deal with SARS-CoV-2, and in the development of repurposed ACE2 inhibitors against COVID-19.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India
| | - Rahul Pawara
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India
| | - Sanjay Surana
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India.
| |
Collapse
|
2
|
Iqbal Yatoo M, Hamid Z, Rather I, Nazir QUA, Bhat RA, Ul Haq A, Magray SN, Haq Z, Sah R, Tiwari R, Natesan S, Bilal M, Harapan H, Dhama K. Immunotherapies and immunomodulatory approaches in clinical trials - a mini review. Hum Vaccin Immunother 2021; 17:1897-1909. [PMID: 33577374 PMCID: PMC7885722 DOI: 10.1080/21645515.2020.1871295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created havoc worldwide. Due to the non-availability of any vaccine or drugs against COVID-19, immunotherapies involving convalescent plasma, immunoglobulins, antibodies (monoclonal or polyclonal), and the use of immunomodulatory agents to enhance immunity are valuable alternative options. Cell-based therapies including natural killer cells, T cells, stem cells along with cytokines and toll-like receptors (TLRs) based therapies are also being exploited potentially against COVID-19. Future research need to strengthen the field of developing effective immunotherapeutics and immunomodulators with a thrust of providing appropriate, affordable, convenient, and cost-effective prophylactic and treatment regimens to combat global COVID-19 crisis that has led to a state of medical emergency enforcing entire countries of the world to devote their research infrastructure and manpower in tackling this pandemic.
Collapse
Affiliation(s)
- Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Zeenat Hamid
- Department of Biotechnology, University of Kashmir, Jammu and Kashmir, India
| | - Izhar Rather
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Qurat Ul Ain Nazir
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Riyaz Ahmed Bhat
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Abrar Ul Haq
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Suhail Nabi Magray
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Zulfqar Haq
- ICAR-Centre for Research on Poultry, Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - SenthilKumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Gandhinagar, Gujarat, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
3
|
Shoemark DK, Colenso CK, Toelzer C, Gupta K, Sessions RB, Davidson AD, Berger I, Schaffitzel C, Spencer J, Mulholland AJ. Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS-CoV-2 Spike Protein*. Angew Chem Int Ed Engl 2021; 60:7098-7110. [PMID: 33469977 PMCID: PMC8013358 DOI: 10.1002/anie.202015639] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Indexed: 12/15/2022]
Abstract
We investigate binding of linoleate and other potential ligands to the recently discovered fatty acid binding site in the SARS-CoV-2 spike protein, using docking and molecular dynamics simulations. Simulations suggest that linoleate and dexamethasone stabilize the locked spike conformation, thus reducing the opportunity for ACE2 interaction. In contrast, cholesterol may expose the receptor-binding domain by destabilizing the closed structure, preferentially binding to a different site in the hinge region of the open structure. We docked a library of FDA-approved drugs to the fatty acid site using an approach that reproduces the structure of the linoleate complex. Docking identifies steroids (including dexamethasone and vitamin D); retinoids (some known to be active in vitro, and vitamin A); and vitamin K as potential ligands that may stabilize the closed conformation. The SARS-CoV-2 spike fatty acid site may bind a diverse array of ligands, including dietary components, and therefore provides a promising target for therapeutics or prophylaxis.
Collapse
Affiliation(s)
- Deborah K. Shoemark
- School of BiochemistryUniversity of Bristol1 Tankard's CloseBristolBS8 1TDUK
- Bristol Synthetic Biology Centre BrisSynBio24 Tyndall AveBristolBS8 1TQUK
| | - Charlotte K. Colenso
- School of Cellular and Molecular Medicine, Biomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Christine Toelzer
- School of BiochemistryUniversity of Bristol1 Tankard's CloseBristolBS8 1TDUK
- Bristol Synthetic Biology Centre BrisSynBio24 Tyndall AveBristolBS8 1TQUK
| | - Kapil Gupta
- School of BiochemistryUniversity of Bristol1 Tankard's CloseBristolBS8 1TDUK
- Bristol Synthetic Biology Centre BrisSynBio24 Tyndall AveBristolBS8 1TQUK
| | - Richard B. Sessions
- School of BiochemistryUniversity of Bristol1 Tankard's CloseBristolBS8 1TDUK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Biomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Imre Berger
- School of BiochemistryUniversity of Bristol1 Tankard's CloseBristolBS8 1TDUK
- Bristol Synthetic Biology Centre BrisSynBio24 Tyndall AveBristolBS8 1TQUK
- Max Planck Bristol Centre for Minimal BiologyCantock's CloseBristolBS8 1TSUK
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Christiane Schaffitzel
- School of BiochemistryUniversity of Bristol1 Tankard's CloseBristolBS8 1TDUK
- Bristol Synthetic Biology Centre BrisSynBio24 Tyndall AveBristolBS8 1TQUK
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | | |
Collapse
|
4
|
Shoemark DK, Colenso CK, Toelzer C, Gupta K, Sessions RB, Davidson AD, Berger I, Schaffitzel C, Spencer J, Mulholland AJ. Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS‐CoV‐2 Spike Protein**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Deborah K. Shoemark
- School of Biochemistry University of Bristol 1 Tankard's Close Bristol BS8 1TD UK
- Bristol Synthetic Biology Centre BrisSynBio 24 Tyndall Ave Bristol BS8 1TQ UK
| | - Charlotte K. Colenso
- School of Cellular and Molecular Medicine, Biomedical Sciences Building University of Bristol Bristol BS8 1TD UK
| | - Christine Toelzer
- School of Biochemistry University of Bristol 1 Tankard's Close Bristol BS8 1TD UK
- Bristol Synthetic Biology Centre BrisSynBio 24 Tyndall Ave Bristol BS8 1TQ UK
| | - Kapil Gupta
- School of Biochemistry University of Bristol 1 Tankard's Close Bristol BS8 1TD UK
- Bristol Synthetic Biology Centre BrisSynBio 24 Tyndall Ave Bristol BS8 1TQ UK
| | - Richard B. Sessions
- School of Biochemistry University of Bristol 1 Tankard's Close Bristol BS8 1TD UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Biomedical Sciences Building University of Bristol Bristol BS8 1TD UK
| | - Imre Berger
- School of Biochemistry University of Bristol 1 Tankard's Close Bristol BS8 1TD UK
- Bristol Synthetic Biology Centre BrisSynBio 24 Tyndall Ave Bristol BS8 1TQ UK
- Max Planck Bristol Centre for Minimal Biology Cantock's Close Bristol BS8 1TS UK
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Christiane Schaffitzel
- School of Biochemistry University of Bristol 1 Tankard's Close Bristol BS8 1TD UK
- Bristol Synthetic Biology Centre BrisSynBio 24 Tyndall Ave Bristol BS8 1TQ UK
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building University of Bristol Bristol BS8 1TD UK
| | | |
Collapse
|