Akamatsu M, Vasan R, Serwas D, Ferrin MA, Rangamani P, Drubin DG. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis.
eLife 2020;
9:49840. [PMID:
31951196 PMCID:
PMC7041948 DOI:
10.7554/elife.49840]
[Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Force generation by actin assembly shapes cellular membranes. An experimentally constrained multiscale model shows that a minimal branched actin network is sufficient to internalize endocytic pits against membrane tension. Around 200 activated Arp2/3 complexes are required for robust internalization. A newly developed molecule-counting method determined that ~200 Arp2/3 complexes assemble at sites of clathrin-mediated endocytosis in human cells. Simulations predict that actin self-organizes into a radial branched array with growing ends oriented toward the base of the pit. Long actin filaments bend between attachment sites in the coat and the base of the pit. Elastic energy stored in bent filaments, whose presence was confirmed by cryo-electron tomography, contributes to endocytic internalization. Elevated membrane tension directs more growing filaments toward the base of the pit, increasing actin nucleation and bending for increased force production. Thus, spatially constrained actin filament assembly utilizes an adaptive mechanism enabling endocytosis under varying physical constraints.
The outer membrane of a cell is a tight but elastic barrier that controls what enters or leaves the cell. Large molecules typically cannot cross this membrane unaided. Instead, to enter the cell, they must be packaged into a pocket of the membrane that is then pulled inside. This process, called endocytosis, shuttles material into a cell hundreds of times a minute.
Endocytosis relies on molecular machines that assemble and disassemble at the membrane as required. One component, a protein called actin, self-assembles near the membrane into long filaments with many repeated subunits. These filaments grow against the membrane, pulling it inwards. But it was not clear how actin filaments organize in such a way that allows them to pull on the membrane with enough force – and without a template to follow.
Akamatsu et al. set about identifying how actin operates during endocytosis by using computer simulations that were informed by measurements made in living cells. The simulations included information about the location of actin and other essential molecules, along with the details of how these molecules work individually and together. Akamatsu et al. also developed a method to count the numbers of molecules of a key protein at individual sites of endocytosis. High-resolution imaging was then used to create 3D pictures of actin and endocytosis in action in human cells grown in the laboratory.
The analysis showed the way actin filaments arrange themselves depends on the starting positions of a few key molecules that connect to actin. Imaging confirmed that, like a pole-vaulting pole, the flexible actin filaments bend to store energy and then release it to pull the membrane inwards during endocytosis. Finally, the simulations predicted that the collection of filaments adapts its shape and size in response to the resistance of the elastic membrane. This makes the system opportunistic and adaptable to the unpredictable environment within cells.
Collapse