1
|
Marín-García C, Álvarez-González L, Marín-Gual L, Casillas S, Picón J, Yam K, Garcias-Ramis MM, Vara C, Ventura J, Ruiz-Herrera A. Multiple Genomic Landscapes of Recombination and Genomic Divergence in Wild Populations of House Mice-The Role of Chromosomal Fusions and Prdm9. Mol Biol Evol 2024; 41:msae063. [PMID: 38513632 PMCID: PMC10991077 DOI: 10.1093/molbev/msae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Chromosomal fusions represent one of the most common types of chromosomal rearrangements found in nature. Yet, their role in shaping the genomic landscape of recombination and hence genome evolution remains largely unexplored. Here, we take advantage of wild mice populations with chromosomal fusions to evaluate the effect of this type of structural variant on genomic landscapes of recombination and divergence. To this aim, we combined cytological analysis of meiotic crossovers in primary spermatocytes with inferred analysis of recombination rates based on linkage disequilibrium using single nucleotide polymorphisms. Our results suggest the presence of a combined effect of Robertsonian fusions and Prdm9 allelic background, a gene involved in the formation of meiotic double strand breaks and postzygotic reproductive isolation, in reshaping genomic landscapes of recombination. We detected a chromosomal redistribution of meiotic recombination toward telomeric regions in metacentric chromosomes in mice with Robertsonian fusions when compared to nonfused mice. This repatterning was accompanied by increased levels of crossover interference and reduced levels of estimated recombination rates between populations, together with high levels of genomic divergence. Interestingly, we detected that Prdm9 allelic background was a major determinant of recombination rates at the population level, whereas Robertsonian fusions showed limited effects, restricted to centromeric regions of fused chromosomes. Altogether, our results provide new insights into the effect of Robertsonian fusions and Prdm9 background on meiotic recombination.
Collapse
Affiliation(s)
- Cristina Marín-García
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Sònia Casillas
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Judith Picón
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Keren Yam
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - María Magdalena Garcias-Ramis
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Small Mammals Research Unit, Granollers Museum of Natural Sciences, Granollers 08402, Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
2
|
Mir A, Song Y, Lee H, Montazer‐Zohouri M, Reisi M, Tabatabaiefar MA. A deleterious frameshift insertion mutation in the ZNF142 gene leads to intellectual developmental disorder with impaired speech in three affected siblings: Clinical features and literature review. Mol Genet Genomic Med 2023; 11:e2261. [PMID: 37496384 PMCID: PMC10724506 DOI: 10.1002/mgg3.2261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND ZNF142 gene is a protein-coding gene encoding Zinc Finger Protein 142. ZNF proteins are a vast group of cellular effectors with a wide range of functions such as signal transduction, transcriptional regulation, meiotic recombination, DNA repair, development, and cell migration. Mutations in the ZNF142 gene are related to neurodevelopmental disorder with impaired speech and hyperkinetic movements (NEDISHM). This study on a family with three affected siblings identified a pathogenic frameshift insertion variant. In addition, we conducted a review of the literature on previously reported ZNF142 gene variants and their clinical manifestations. MATERIALS AND METHODS Three affected siblings with severe intellectual developmental disabilities and speech impairments, their parents, and other sibs in the family were included. The patients were studied by the whole exome sequencing. Sanger sequencing, co-segregation analysis, and in silico analysis were carried out to verify candidate variant. The identified variant was interpreted based on the ACMG guideline. RESULTS We identified a frameshift insertion variant in the ZNF142 gene, NM_001379659.1: c.3755dup (NP_001366588.1:p.Arg1253ThrfsTer15), that was related to the clinical features of three patients. The identified variant was found to be pathogenic. CONCLUSION The current study findings expand the existing knowledge of the variant on the ZNF142 gene implicated in the neurodevelopmental disorder, intellectual disability, and impaired speech and it presents a detailed clinical feature associated with related conditions. The data have implications for genetic diagnosis and counseling in families with the same disorders.
Collapse
Affiliation(s)
- Atefeh Mir
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Yongjun Song
- Division of Medical Genetics3Billion IncSeoulSouth Korea
| | - Hane Lee
- Division of Medical Genetics3Billion IncSeoulSouth Korea
| | - Mostafa Montazer‐Zohouri
- Genetics of Non‐Communicable Disease Research CenterZahedan University of Medical SciencesZahedanIran
| | - Marziyeh Reisi
- Department of ImmunologyShahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
- GenTArget Corp (GTAC), Deputy of Research and TechnologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
3
|
Giannattasio T, Testa E, Palombo R, Chellini L, Franceschini F, Crevenna Á, Petkov PM, Paronetto MP, Barchi M. The RNA-binding protein FUS/TLS interacts with SPO11 and PRDM9 and localize at meiotic recombination hotspots. Cell Mol Life Sci 2023; 80:107. [PMID: 36967403 PMCID: PMC10040399 DOI: 10.1007/s00018-023-04744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
In mammals, meiotic recombination is initiated by the introduction of DNA double strand breaks (DSBs) into narrow segments of the genome, defined as hotspots, which is carried out by the SPO11/TOPOVIBL complex. A major player in the specification of hotspots is PRDM9, a histone methyltransferase that, following sequence-specific DNA binding, generates trimethylation on lysine 4 (H3K4me3) and lysine 36 (H3K36me3) of histone H3, thus defining the hotspots. PRDM9 activity is key to successful meiosis, since in its absence DSBs are redirected to functional sites and synapsis between homologous chromosomes fails. One protein factor recently implicated in guiding PRDM9 activity at hotspots is EWS, a member of the FET family of proteins that also includes TAF15 and FUS/TLS. Here, we demonstrate that FUS/TLS partially colocalizes with PRDM9 on the meiotic chromosome axes, marked by the synaptonemal complex component SYCP3, and physically interacts with PRDM9. Furthermore, we show that FUS/TLS also interacts with REC114, one of the axis-bound SPO11-auxiliary factors essential for DSB formation. This finding suggests that FUS/TLS is a component of the protein complex that promotes the initiation of meiotic recombination. Accordingly, we document that FUS/TLS coimmunoprecipitates with SPO11 in vitro and in vivo. The interaction occurs with both SPO11β and SPO11α splice isoforms, which are believed to play distinct functions in the formation of DSBs in autosomes and male sex chromosomes, respectively. Finally, using chromatin immunoprecipitation experiments, we show that FUS/TLS is localized at H3K4me3-marked hotspots in autosomes and in the pseudo-autosomal region, the site of genetic exchange between the XY chromosomes.
Collapse
Affiliation(s)
- Teresa Giannattasio
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
| | - Erika Testa
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
| | - Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143, Rome, Italy
| | - Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143, Rome, Italy
| | - Flavia Franceschini
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
| | - Álvaro Crevenna
- European Molecular Biology Laboratory, Neurobiology and Epigenetics Unit, Monterotondo, Italy
| | | | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143, Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, 00135, Rome, Italy.
| | - Marco Barchi
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
4
|
Abstract
Recent discoveries have advanced our understanding of recombination initiation beyond the placement of double-stranded DNA breaks (DSBs) from germline replication timing to the dynamic reorganization of chromatin, and defined critical players of recombination initiation. This article focuses on recombination initiation in mammals utilizing the PRDM9 protein to orchestrate crucial stages of meiotic recombination initiation by interacting with the local DNA environment and several protein complexes. The Pioneer Complex with the SNF2-type chromatin remodeling enzyme HELLS, exposes PRDM9-bound DNA. At the same time, a Compass-Complex containing EWSR1, CXXC1, CDYL, EHMT2 and PRDM9 facilitates the association of putative hotspot sites in DNA loops with the chromosomal axis where DSB-promoting complexes are located, and DSBs are catalyzed by the SPO11/TOPOVIBL complex. Finally, homology search is facilitated at PRDM9-directed sites by ANKRD31. The Reader-Writer system consists of PRDM9 writing characteristic histone methylation signatures, which are read by ZCWPW1, promoting efficient homology engagement.
Collapse
Affiliation(s)
- Elena Damm
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
5
|
Kamal N, Khamirani HJ, Mohammadi S, Dastgheib SA, Dianatpour M, Tabei SMB. ZNF142 mutation causes neurodevelopmental disorder with speech impairment and seizures: Novel variants and literature review. Eur J Med Genet 2022; 65:104522. [PMID: 35618198 DOI: 10.1016/j.ejmg.2022.104522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
The ZNF142 gene on chromosome 2q35 contains ten exons and encodes a zinc finger protein 142 with 31 C2H2-type zinc fingers domain. Pathogenic variants in ZNF142 result in an autosomal recessive neurodevelopmental disorder with impaired speech and developmental delay. Here, we report two novel variants (NM_001105537: c.25C > T/c.1741C > T, p.Gln9*/p.Arg581Cys) in ZNF142 in an Iranian family identified by Whole-Exome sequencing and confirmed by Sanger sequencing. These variants are categorized as "pathogenic" and "variant of unknown significance" based on the standards for the interpretation of sequence variations recommended by ACMG, respectively. The proband is a five-year-old male born to consanguineous parents. The compound heterozygous variant (NM_001105537: c.25C > T/c.1741C > T, p.Gln9*/p.Arg581Cys) in ZNF142 was identified in the proband with moderate intellectual disability, global developmental delay, speech impairment, and seizures. This paper reported the sixth family in the world with novel pathogenic variants in the ZNF142 gene as the reason for neurodevelopmental Disorder with Impaired Speech and Hyperkinetic Movements (NEDISHM) and determining the phenotype spectrum of this disease. In this study, we also reviewed the phenotype of the former cases. In contrast to the Malaysian cases, proband in the present paper does not manifest any facial features similar to the patients in the initial study. Further studies on the NEDISHM patients could be valuable to determine the phenotype precisely.
Collapse
Affiliation(s)
- Neda Kamal
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Jafari Khamirani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Mohammadi
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|