1
|
Szachnowski U, Becker E, Stuparević I, Wery M, Sallou O, Boudet M, Bretaudeau A, Morillon A, Primig M. Pervasive formation of double-stranded RNAs by overlapping sense/antisense transcripts in budding yeast mitosis and meiosis. RNA (NEW YORK, N.Y.) 2025; 31:497-513. [PMID: 39848697 PMCID: PMC11912912 DOI: 10.1261/rna.080290.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/04/2025] [Indexed: 01/25/2025]
Abstract
Previous RNA profiling studies revealed coexpression of overlapping sense/antisense (s/a) transcripts in pro- and eukaryotic organisms. Functional analyses in yeast have shown that certain s/a mRNA/mRNA and mRNA/lncRNA pairs form stable double-stranded RNAs (dsRNAs) that affect transcript stability. Little is known, however, about the genome-wide prevalence of dsRNA formation and its potential functional implications during growth and development in diploid budding yeast. To address this question, we monitored dsRNAs in a Saccharomyces cerevisiae strain expressing the ribonuclease DCR1 and the RNA-binding protein AGO1 from Naumovozyma castellii We identify dsRNAs at 347 s/a loci that express partially or completely overlapping transcripts during mitosis, meiosis, or both stages of the diploid life cycle. We associate dsRNAs with s/a loci previously thought to be exclusively regulated by antisense interference, and others that encode antisense RNAs, which down-regulate sense mRNA-encoded protein levels. To facilitate hypothesis building, we developed the sense/antisense double-stranded RNA (SensR) expression viewer. Users are able to retrieve different graphical displays of dsRNA and RNA expression data using genome coordinates and systematic or standard names for mRNAs and different types of stable or cryptic long noncoding RNAs (lncRNAs). Our data are a useful resource for improving yeast genome annotation and for work on RNA-based regulatory mechanisms controlling transcript and protein levels. The data are also interesting from an evolutionary perspective, since natural antisense transcripts that form stable dsRNAs have been detected in many species from bacteria to humans. The SensR viewer is freely accessible at https://sensr.genouest.org.
Collapse
Affiliation(s)
- Ugo Szachnowski
- Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris, France
| | - Emmanuelle Becker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042 Rennes, France
| | - Igor Stuparević
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042 Rennes, France
| | - Maxime Wery
- Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris, France
| | - Olivier Sallou
- GenOuest, IRISA, Campus de Beaulieu, F-35000 Rennes, France
| | - Mateo Boudet
- GenOuest, IRISA, Campus de Beaulieu, F-35000 Rennes, France
| | | | - Antonin Morillon
- Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042 Rennes, France
| |
Collapse
|
2
|
Wery M, Foretek D, Andjus S, Verdys P, Morillon A. Northern Blotting: Protocols for Radioactive and Nonradioactive Detection of RNA. Methods Mol Biol 2025; 2863:13-28. [PMID: 39535701 DOI: 10.1007/978-1-0716-4176-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Northern blotting is a common technique in RNA biology, allowing to detect and quantify RNAs of interest following separation by gel electrophoresis, transfer to a membrane, and hybridization of specific anti-complementary labelled probes. In this chapter, we describe our protocol for efficient RNA extraction from yeast, separation on agarose gel, and capillary transfer to a membrane. We provide two different methods for strand-specific detection of several types of RNAs using oligonucleotide probes, the first using radioactive 32P-labelled probes, the second based on nonradioactive digoxigenin-labelled probes.
Collapse
Affiliation(s)
- Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France.
| | - Dominika Foretek
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France
| | - Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France
| | - Perrine Verdys
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France.
| |
Collapse
|
3
|
Wery M, Szachnowski U, Andjus S, Morillon A. Transcriptome-Wide Analysis of the 5' Cap Status of RNA Using 5' Monophosphate-Dependent Exonuclease Digestion and RNA Sequencing. Methods Mol Biol 2025; 2863:117-135. [PMID: 39535708 DOI: 10.1007/978-1-0716-4176-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Eukaryotic mRNAs carry an N7-methylguanosine (m7G) cap structure at their 5' extremity, which protects them from the degradation by 5'-3' exoribonucleases and plays a pivotal role in mRNA metabolism, promoting splicing, nuclear export, and translation. Decapping, the enzymatic process that removes this structure, is a key event during cytoplasmic mRNA 5'-3' decay, leading to the degradation of the transcript body by Xrn1. In this chapter, we describe a procedure to assess the cap status of RNA at the transcriptome level. It is based on a treatment of total RNA extracts with a 5' monophosphate-dependent exonuclease, which like Xrn1 specifically degrades decapped RNAs harboring 5' monophosphate extremities, but not RNAs with intact m7G cap. The digested RNAs are then analyzed by RNA sequencing.
Collapse
Affiliation(s)
- Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France.
| | - Ugo Szachnowski
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France
| | - Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France.
| |
Collapse
|
4
|
Szachnowski U, Sallou O, Boudet M, Bretaudeau A, Wery M, Morillon A, Primig M. The 5-Fluorouracil RNA Expression Viewer (5-FU R) Facilitates Interpreting the Effects of Drug Treatment and RRP6 Deletion on the Transcriptional Landscape in Yeast. Yeast 2024; 41:629-640. [PMID: 39345013 DOI: 10.1002/yea.3982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Saccharomyces cerevisiae is an excellent model to study the effect of external cues on cell division and stress response. 5-Fluorocuracil (5-FU) has been used to treat solid tumors since several decades. The drug was initially designed to interfere with DNA replication but was later found to exert its antiproliferative effect also via RNA-dependent processes. Since 5-FU inhibits the activity of the 3'-5'-exoribonuclease Rrp6 in yeast and mammals, earlier work has compared the effect of 5-FU treatment and RRP6 deletion at the transcriptome level in diploid synchronized yeast cells. To facilitate interpreting the expression data we have developed an improved 5-Fluorouracil RNA (5-FUR) expression viewer. Users can access information via genome coordinates and systematic or standard names for mRNAs and Xrn1-dependent-, stable-, cryptic-, and meiotic unannotated transcripts (XUTs, SUTs, CUTs, and MUTs). Normalized log2-transformed or linear data can be displayed as filled diagrams, line graphs or color-coded heatmaps. The expression data are useful for researchers interested in processes such as cell cycle regulation, mitotic repression of meiotic genes, the effect of 5-FU treatment and Rrp6 deficiency on the transcriptome and expression profiles of sense/antisense loci that encode overlapping transcripts. The viewer is accessible at http://5fur.genouest.org.
Collapse
Affiliation(s)
| | | | - Mateo Boudet
- GenOuest, IRISA, Campus de Beaulieu, Rennes, France
| | | | - Maxime Wery
- Institut Curie, Sorbonne Université, Paris, France
| | | | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| |
Collapse
|
5
|
Andjus S, Szachnowski U, Vogt N, Gioftsidi S, Hatin I, Cornu D, Papadopoulos C, Lopes A, Namy O, Wery M, Morillon A. Pervasive translation of Xrn1-sensitive unstable long noncoding RNAs in yeast. RNA (NEW YORK, N.Y.) 2024; 30:662-679. [PMID: 38443115 PMCID: PMC11098462 DOI: 10.1261/rna.079903.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
Despite being predicted to lack coding potential, cytoplasmic long noncoding (lnc)RNAs can associate with ribosomes. However, the landscape and biological relevance of lncRNA translation remain poorly studied. In yeast, cytoplasmic Xrn1-sensitive unstable transcripts (XUTs) are targeted by nonsense-mediated mRNA decay (NMD), suggesting a translation-dependent degradation process. Here, we report that XUTs are pervasively translated, which impacts their decay. We show that XUTs globally accumulate upon translation elongation inhibition, but not when initial ribosome loading is impaired. Ribo-seq confirmed ribosomes binding to XUTs and identified ribosome-associated 5'-proximal small ORFs. Mechanistically, the NMD-sensitivity of XUTs mainly depends on the 3'-untranslated region length. Finally, we show that the peptide resulting from the translation of an NMD-sensitive XUT reporter exists in NMD-competent cells. Our work highlights the role of translation in the posttranscriptional metabolism of XUTs. We propose that XUT-derived peptides could be exposed to natural selection, while NMD restricts XUT levels.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Ugo Szachnowski
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Nicolas Vogt
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Stamatia Gioftsidi
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Isabelle Hatin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Chris Papadopoulos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Anne Lopes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| |
Collapse
|
6
|
Chen Y, Dougan KE, Nguyen Q, Bhattacharya D, Chan CX. Genome-wide transcriptome analysis reveals the diversity and function of long non-coding RNAs in dinoflagellates. NAR Genom Bioinform 2024; 6:lqae016. [PMID: 38344275 PMCID: PMC10858649 DOI: 10.1093/nargab/lqae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 10/28/2024] Open
Abstract
Dinoflagellates are a diverse group of phytoplankton, ranging from harmful bloom-forming microalgae to photosymbionts of coral reefs. Genome-scale data from dinoflagellates reveal atypical genomic features, extensive genomic divergence, and lineage-specific innovation of gene functions. Long non-coding RNAs (lncRNAs), known to regulate gene expression in eukaryotes, are largely unexplored in dinoflagellates. Here, using high-quality genome and transcriptome data, we identified 48039 polyadenylated lncRNAs in three dinoflagellate species: the coral symbionts Cladocopium proliferum and Durusdinium trenchii, and the bloom-forming species, Prorocentrum cordatum. These lncRNAs have fewer introns and lower G+C content than protein-coding sequences; 37 768 (78.6%) are unique with respect to sequence similarity. We classified all lncRNAs based on conserved motifs (k-mers) into distinct clusters, following properties of protein-binding and/or subcellular localisation. Interestingly, 3708 (7.7%) lncRNAs are differentially expressed under heat stress, algal lifestyle, and/or growth phase, and share co-expression patterns with protein-coding genes. Based on inferred triplex interactions between lncRNA and putative promoter regions, we identified 19 460 putative gene targets for 3721 lncRNAs; 907 genes exhibit differential expression under heat stress. These results reveal, for the first time, the diversity of lncRNAs in dinoflagellates and how lncRNAs may regulate gene expression as a heat-stress response in these ecologically important microbes.
Collapse
Affiliation(s)
- Yibi Chen
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD 4072, Australia
| | - Katherine E Dougan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD 4072, Australia
| | - Quan Nguyen
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Debashish Bhattacharya
- Rutgers University, Department of Biochemistry and Microbiology, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Evans-Yamamoto D, Dubé AK, Saha G, Plante S, Bradley D, Gagnon-Arsenault I, Landry CR. Parallel Nonfunctionalization of CK1δ/ε Kinase Ohnologs Following a Whole-Genome Duplication Event. Mol Biol Evol 2023; 40:msad246. [PMID: 37979156 PMCID: PMC10699747 DOI: 10.1093/molbev/msad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Whole-genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in Saccharomyces cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post-WGD. In S. cerevisiae, HRR25 encodes the casein kinase 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post-WGD and non-WGD species, and have nonconserved cellular localization, consistent with their ongoing loss of function. The analysis in Naumovozyma castellii shows that the noncomplementing ohnolog is expressed at a lower level and has become nonessential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.
Collapse
Affiliation(s)
- Daniel Evans-Yamamoto
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Gourav Saha
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, South Goa, India
| | - Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
| |
Collapse
|
8
|
Evans-Yamamoto D, Dubé AK, Saha G, Plante S, Bradley D, Gagnon-Arsenault I, Landry CR. Parallel nonfunctionalization of CK1δ/ε kinase ohnologs following a whole-genome duplication event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560513. [PMID: 37873368 PMCID: PMC10592909 DOI: 10.1101/2023.10.02.560513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Whole genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in S. cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post WGD. In S. cerevisiae, HRR25 encodes the casein kinase (CK) 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post and non-WGD species, and have non-conserved cellular localization, consistent with their ongoing loss of function. The analysis in N. castelli shows that the non-complementing ohnolog is expressed at a lower level and has become non-essential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.
Collapse
Affiliation(s)
- Daniel Evans-Yamamoto
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| | - Gourav Saha
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani K K Birla Goa campus, Zuarinagar, South Goa, Goa, India
- Current address: Department of Bioengineering, University of California, CA 90095, United States
| | - Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
- Current address: Département de Biochimie, Université de Sherbrooke, Québec, J1K 0A5, Canada
| | - David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| |
Collapse
|
9
|
Wery M, Szachnowski U, Andjus S, de Andres-Pablo A, Morillon A. The RNA helicases Dbp2 and Mtr4 regulate the expression of Xrn1-sensitive long non-coding RNAs in yeast. FRONTIERS IN RNA RESEARCH 2023; 1:1244554. [PMID: 37667796 PMCID: PMC7615016 DOI: 10.3389/frnar.2023.1244554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The expression of yeast long non-coding (lnc)RNAs is restricted by RNA surveillance machineries, including the cytoplasmic 5'-3' exonuclease Xrn1 which targets a conserved family of lncRNAs defined as XUTs, and that are mainly antisense to protein-coding genes. However, the co-factors involved in the degradation of these transcripts and the underlying molecular mechanisms remain largely unknown. Here, we show that two RNA helicases, Dbp2 and Mtr4, act as global regulators of XUTs expression. Using RNA-Seq, we found that most of them accumulate upon Dbp2 inactivation or Mtr4 depletion. Mutants of the cytoplasmic RNA helicases Ecm32, Ski2, Slh1, Dbp1, and Dhh1 did not recapitulate this global stabilization of XUTs, suggesting that XUTs decay is specifically controlled by Dbp2 and Mtr4. Notably, Dbp2 and Mtr4 affect XUTs independently of their configuration relative to their paired-sense mRNAs. Finally, we show that the effect of Dbp2 on XUTs depends on a cytoplasmic localization. Overall, our data indicate that Dbp2 and Mtr4 are global regulators of lncRNAs expression and contribute to shape the non-coding transcriptome together with RNA decay machineries.
Collapse
Affiliation(s)
- Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne
Université, CNRS UMR3244, Paris Cedex, France
| | - Ugo Szachnowski
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne
Université, CNRS UMR3244, Paris Cedex, France
| | - Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL
University, Sorbonne Université, CNRS UMR3244, Paris Cedex, France
| | - Alvaro de Andres-Pablo
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne
Université, CNRS UMR3244, Paris Cedex, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne
Université, CNRS UMR3244, Paris Cedex, France
| |
Collapse
|
10
|
RNA-Mediated Regulation of Meiosis in Budding Yeast. Noncoding RNA 2022; 8:ncrna8060077. [PMID: 36412912 PMCID: PMC9680404 DOI: 10.3390/ncrna8060077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cells change their physiological state in response to environmental cues. In the absence of nutrients, unicellular fungi such as budding yeast exit mitotic proliferation and enter the meiotic cycle, leading to the production of haploid cells that are encased within spore walls. These cell state transitions are orchestrated in a developmentally coordinated manner. Execution of the meiotic cell cycle program in budding yeast, Saccharomyces cerevisiae, is regulated by the key transcription factor, Ime1. Recent developments have uncovered the role of non-coding RNA in the regulation of Ime1 and meiosis. In this review, we summarize the role of ncRNA-mediated and RNA homeostasis-based processes in the regulation of meiosis in Saccharomyces cerevisiae.
Collapse
|
11
|
Andjus S, Morillon A, Wery M. From Yeast to Mammals, the Nonsense-Mediated mRNA Decay as a Master Regulator of Long Non-Coding RNAs Functional Trajectory. Noncoding RNA 2021; 7:ncrna7030044. [PMID: 34449682 PMCID: PMC8395947 DOI: 10.3390/ncrna7030044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons. However, it is now clear that mRNA quality control represents only one face of the multiple functions of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these transcripts. In this regard, we describe several examples of functional micropeptides produced from lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of lncRNAs, which might be critical for the cell to respond to environmental changes.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France;
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| |
Collapse
|
12
|
Getz MA, Weinberg DE, Drinnenberg IA, Fink GR, Bartel DP. Xrn1p acts at multiple steps in the budding-yeast RNAi pathway to enhance the efficiency of silencing. Nucleic Acids Res 2020; 48:7404-7420. [PMID: 32501509 PMCID: PMC7528652 DOI: 10.1093/nar/gkaa468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 05/20/2020] [Indexed: 01/12/2023] Open
Abstract
RNA interference (RNAi) is a gene-silencing pathway that can play roles in viral defense, transposon silencing, heterochromatin formation and post-transcriptional gene silencing. Although absent from Saccharomyces cerevisiae, RNAi is present in other budding-yeast species, including Naumovozyma castellii, which have an unusual Dicer and a conventional Argonaute that are both required for gene silencing. To identify other factors that act in the budding-yeast pathway, we performed an unbiased genetic selection. This selection identified Xrn1p, the cytoplasmic 5'-to-3' exoribonuclease, as a cofactor of RNAi in budding yeast. Deletion of XRN1 impaired gene silencing in N. castellii, and this impaired silencing was attributable to multiple functions of Xrn1p, including affecting the composition of siRNA species in the cell, influencing the efficiency of siRNA loading into Argonaute, degradation of cleaved passenger strand and degradation of sliced target RNA.
Collapse
Affiliation(s)
- Matthew A Getz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - David E Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - Ines A Drinnenberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| |
Collapse
|
13
|
Stolyarenko AD. Nuclear Argonaute Piwi Gene Mutation Affects rRNA by Inducing rRNA Fragment Accumulation, Antisense Expression, and Defective Processing in Drosophila Ovaries. Int J Mol Sci 2020; 21:ijms21031119. [PMID: 32046213 PMCID: PMC7037970 DOI: 10.3390/ijms21031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3′-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophilamelanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.
Collapse
Affiliation(s)
- Anastasia D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia
| |
Collapse
|