1
|
Puthiyottil S, Jose D, Kuriakose N, Skaria T. The developmental and inflammatory disease target protein ADAM17 is vulnerable to off-target interaction by the drug eltrombopag: Insights from molecular modeling. Comput Biol Med 2025; 186:109693. [PMID: 39967193 DOI: 10.1016/j.compbiomed.2025.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The loss of proteolytic activity of ADAM17 causes birth defects and embryonic lethality. Conversely, inhibiting ADAM17 activity represents a potential strategy for treating inflammatory and autoimmune diseases. ADAM17 has an active site cleft with a divalent Zn ion and hydrophobic S1'/S3' subsites interconnected to form an L shaped cavity. However, it is currently unknown whether the active site of ADAM17 is susceptible to off-target inhibition by the small molecule drug eltrombopag, which contains metal-binding moieties and is classified as pregnancy category C by the FDA. The in-depth molecular modeling analysis in this study revealed that the unique structural features of L-shaped S1'/S3', crucial for determining ADAM17 specificity, along with spatial constraints imposed by active site amino acid residues, create an ideal binding environment for eltrombopag. Interestingly, the structural peculiarity of L-shaped S1'/S3' cavity enabled the carboxylate group rather than the traditionally recognized metal binding domain of eltrombopag to chelate catalytic Zn of ADAM17. Further, eltrombopag's biphenyl and xylene groups embed in the S1'/S3' subsites and pyrazole and hydrazine linker occupy the interconnecting tunnel, forming a stable eltrombopag-ADAM17 complex. These novel findings from molecular modeling suggest that ADAM17 is an off-target of eltrombopag, a drug used to increase platelet production in thrombocytopenia. They stimulate further in vitro and in vivo studies to test the repurposing potential of eltrombopag as an ADAM17 inhibitor to prevent tissue destruction in autoimmune diseases in adults and whether the use of eltrombopag during pregnancy could potentially lead to developmental toxicity due to ADAM17 inhibition.
Collapse
Affiliation(s)
- Shahid Puthiyottil
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Deepthi Jose
- Department of Chemistry, Providence Women's College (Autonomous), Kozhikode, Affiliated to University of Calicut, Kerala, India
| | - Nishamol Kuriakose
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Tom Skaria
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
2
|
Lu F, Zhao H, Dai Y, Wang Y, Lee CH, Freeman M. Cryo-EM reveals that iRhom2 restrains ADAM17 protease activity to control the release of growth factor and inflammatory signals. Mol Cell 2024; 84:2152-2165.e5. [PMID: 38781971 PMCID: PMC11248996 DOI: 10.1016/j.molcel.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a membrane-tethered protease that triggers multiple signaling pathways. It releases active forms of the primary inflammatory cytokine tumor necrosis factor (TNF) and cancer-implicated epidermal growth factor (EGF) family growth factors. iRhom2, a rhomboid-like, membrane-embedded pseudoprotease, is an essential cofactor of ADAM17. Here, we present cryoelectron microscopy (cryo-EM) structures of the human ADAM17/iRhom2 complex in both inactive and active states. These reveal three regulatory mechanisms. First, exploiting the rhomboid-like hallmark of TMD recognition, iRhom2 interacts with the ADAM17 TMD to promote ADAM17 trafficking and enzyme maturation. Second, a unique iRhom2 extracellular domain unexpectedly retains the cleaved ADAM17 inhibitory prodomain, safeguarding against premature activation and dysregulated proteolysis. Finally, loss of the prodomain from the complex mobilizes the ADAM17 protease domain, contributing to its ability to engage substrates. Our results reveal how a rhomboid-like pseudoprotease has been repurposed during evolution to regulate a potent membrane-tethered enzyme, ADAM17, ensuring the fidelity of inflammatory and growth factor signaling.
Collapse
Affiliation(s)
- Fangfang Lu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hongtu Zhao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yingdi Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
3
|
Scramblases as Regulators of Proteolytic ADAM Function. MEMBRANES 2022; 12:membranes12020185. [PMID: 35207106 PMCID: PMC8880048 DOI: 10.3390/membranes12020185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Proteolytic ectodomain release is a key mechanism for regulating the function of many cell surface proteins. The sheddases ADAM10 and ADAM17 are the best-characterized members of the family of transmembrane disintegrin-like metalloproteinase. Constitutive proteolytic activities are low but can be abruptly upregulated via inside-out signaling triggered by diverse activating events. Emerging evidence indicates that the plasma membrane itself must be assigned a dominant role in upregulation of sheddase function. Data are discussed that tentatively identify phospholipid scramblases as central players during these events. We propose that scramblase-dependent externalization of the negatively charged phospholipid phosphatidylserine (PS) plays an important role in the final activation step of ADAM10 and ADAM17. In this manuscript, we summarize the current knowledge on the interplay of cell membrane changes, PS exposure, and proteolytic activity of transmembrane proteases as well as the potential consequences in the context of immune response, infection, and cancer. The novel concept that scramblases regulate the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface.
Collapse
|
4
|
Inactive rhomboid proteins RHBDF1 and RHBDF2 (iRhoms): a decade of research in murine models. Mamm Genome 2021; 32:415-426. [PMID: 34477920 PMCID: PMC8580931 DOI: 10.1007/s00335-021-09910-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022]
Abstract
Rhomboid proteases, first discovered in Drosophila, are intramembrane serine proteases. Members of the rhomboid protein family that are catalytically deficient are known as inactive rhomboids (iRhoms). iRhoms have been implicated in wound healing, cancer, and neurological disorders such as Alzheimer’s and Parkinson’s diseases, inflammation, and skin diseases. The past decade of mouse research has shed new light on two key protein domains of iRhoms—the cytosolic N-terminal domain and the transmembrane dormant peptidase domain—suggesting new ways to target multiple intracellular signaling pathways. This review focuses on recent advances in uncovering the unique functions of iRhom protein domains in normal growth and development, growth factor signaling, and inflammation, with a perspective on future therapeutic opportunities.
Collapse
|
5
|
Seidel J, Leitzke S, Ahrens B, Sperrhacke M, Bhakdi S, Reiss K. Role of ADAM10 and ADAM17 in Regulating CD137 Function. Int J Mol Sci 2021; 22:2730. [PMID: 33800462 PMCID: PMC7962946 DOI: 10.3390/ijms22052730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Human CD137 (4-1BB), a member of the TNF receptor family, and its ligand CD137L (4-1BBL), are expressed on immune cells and tumor cells. CD137/CD137L interaction mediates bidirectional cellular responses of potential relevance in inflammatory diseases, autoimmunity and oncology. A soluble form of CD137 exists, elevated levels of which have been reported in patients with rheumatoid arthritis and various malignancies. Soluble CD137 (sCD137) is considered to represent a splice variant of CD137. In this report, however, evidence is presented that A Disintegrin and Metalloproteinase (ADAM)10 and potentially also ADAM17 are centrally involved in its generation. Release of sCD137 by transfected cell lines and primary T cells was uniformly inhibitable by ADAM10 inhibition. The shedding function of ADAM10 can be blocked through inhibition of its interaction with surface exposed phosphatidylserine (PS), and this effectively inhibited sCD137 generation. The phospholipid scramblase Anoctamin-6 (ANO6) traffics PS to the outer membrane and thus modifies ADAM10 function. Overexpression of ANO6 increased stimulated shedding, and hyperactive ANO6 led to maximal constitutive shedding of CD137. sCD137 was functionally active and augmented T cell proliferation. Our findings shed new light on the regulation of CD137/CD137L immune responses with potential impact on immunotherapeutic approaches targeting CD137.
Collapse
Affiliation(s)
- Jana Seidel
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (J.S.); (S.L.); (B.A.); (M.S.)
| | - Sinje Leitzke
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (J.S.); (S.L.); (B.A.); (M.S.)
| | - Björn Ahrens
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (J.S.); (S.L.); (B.A.); (M.S.)
| | - Maria Sperrhacke
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (J.S.); (S.L.); (B.A.); (M.S.)
| | | | - Karina Reiss
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (J.S.); (S.L.); (B.A.); (M.S.)
| |
Collapse
|
6
|
Strategies to Target ADAM17 in Disease: From its Discovery to the iRhom Revolution. Molecules 2021; 26:molecules26040944. [PMID: 33579029 PMCID: PMC7916773 DOI: 10.3390/molecules26040944] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
For decades, disintegrin and metalloproteinase 17 (ADAM17) has been the object of deep investigation. Since its discovery as the tumor necrosis factor convertase, it has been considered a major drug target, especially in the context of inflammatory diseases and cancer. Nevertheless, the development of drugs targeting ADAM17 has been harder than expected. This has generally been due to its multifunctionality, with over 80 different transmembrane proteins other than tumor necrosis factor α (TNF) being released by ADAM17, and its structural similarity to other metalloproteinases. This review provides an overview of the different roles of ADAM17 in disease and the effects of its ablation in a number of in vivo models of pathological conditions. Furthermore, here, we comprehensively encompass the approaches that have been developed to accomplish ADAM17 selective inhibition, from the newest non-zinc-binding ADAM17 synthetic inhibitors to the exploitation of iRhom2 to specifically target ADAM17 in immune cells.
Collapse
|
7
|
Lorenzen I, Eble JA, Hanschmann EM. Thiol switches in membrane proteins - Extracellular redox regulation in cell biology. Biol Chem 2020; 402:253-269. [PMID: 33108336 DOI: 10.1515/hsz-2020-0266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Redox-mediated signal transduction depends on the enzymatic production of second messengers such as hydrogen peroxide, nitric oxide and hydrogen sulfite, as well as specific, reversible redox modifications of cysteine-residues in proteins. So-called thiol switches induce for instance conformational changes in specific proteins that regulate cellular pathways e.g., cell metabolism, proliferation, migration, gene expression and inflammation. Reduction, oxidation and disulfide isomerization are controlled by oxidoreductases of the thioredoxin family, including thioredoxins, glutaredoxins, peroxiredoxins and protein dsisulfide isomerases. These proteins are located in different cellular compartments, interact with substrates and catalyze specific reactions. Interestingly, some of these proteins are released by cells. Their extracellular functions and generally extracellular redox control have been widely underestimated. Here, we give an insight into extracellular redox signaling, extracellular thiol switches and their regulation by secreted oxidoreductases and thiol-isomerases, a topic whose importance has been scarcely studied so far, likely due to methodological limitations. We focus on the secreted redox proteins and characterized thiol switches in the ectodomains of membrane proteins, such as integrins and the metalloprotease ADAM17, which are among the best-characterized proteins and discuss their underlying mechanisms and biological implications.
Collapse
Affiliation(s)
- Inken Lorenzen
- Centre of Biochemistry and Molecular Biology, Structural Biology, Christian-Albrecht University of Kiel, Am Botanischen Garten 1-9, D-24118Kiel, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, D-48149Münster, Germany
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Life Science Center, Merowingerplatz 1a, D-40225Düsseldorf, Germany
| |
Collapse
|
8
|
Düsterhöft S, Bartels AK, Koudelka T, Lilienthal E, Schäfer M, Garbers C, Tholey A, Grötzinger J, Lorenzen I. Distance dependent shedding of IL-6R. Biochem Biophys Res Commun 2020; 526:355-360. [PMID: 32222277 DOI: 10.1016/j.bbrc.2020.03.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 01/17/2023]
Abstract
Proteolytic processing of membrane proteins by A disintegrin and metalloprotease-17 (ADAM17) is a key regulatory step in many physiological and pathophysiological processes. This so-called shedding is essential for development, regeneration and immune defense. An uncontrolled ADAM17 activity promotes cancer development, chronic inflammation and autoimmune diseases. Consequently, the ADAM17 activity is tightly regulated. As a final trigger for the shedding event a phosphatidylserine (PS) flip to the outer leaflet of the cell membrane was recently described. PS interacts with the extracellular part of ADAM17, which results in the shedding event by shifting the catalytic domain towards the membrane close to the cleavage sites within ADAM17 substrates. Our data indicate that the intrinsic proteolytic activity of the catalytic domain is prerequisite for the shedding activity and constantly present. However, the accessibility for substrate cleavage sites is controlled on several levels. In this report, we demonstrate that the positioning of the catalytic domain towards the cleavage sites is a crucial part of the shedding process. This finding contributes to the understanding of the complex and multilayered regulation of ADAM17 at the cell surface.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne-Kathrin Bartels
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24118, Kiel, Germany
| | - Tomas Koudelka
- Institute for Experimental Medicine - Division of Systematic Proteome Research, Christian-Albrechts-University, Niemannsweg 11, 24105, Kiel, Germany
| | - Eva Lilienthal
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Schäfer
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24118, Kiel, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Leipziger-Str. 44, 39120, Magdeburg, Germany
| | - Andreas Tholey
- Institute for Experimental Medicine - Division of Systematic Proteome Research, Christian-Albrechts-University, Niemannsweg 11, 24105, Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24118, Kiel, Germany.
| | - Inken Lorenzen
- Department of Structural Biology, Institute of Zoology, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|