1
|
Giménez-Orenga K, Martín-Martínez E, Nathanson L, Oltra E. HERV activation segregates ME/CFS from fibromyalgia while defining a novel nosologic entity. eLife 2025; 14:RP104441. [PMID: 40338225 PMCID: PMC12061480 DOI: 10.7554/elife.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Research of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM), two acquired chronic illnesses affecting mainly females, has failed to ascertain their frequent co-appearance and etiology. Despite prior detection of human endogenous retrovirus (HERV) activation in these diseases, the potential biomarker value of HERV expression profiles for their diagnosis, and the relationship of HERV expression profiles with patient immune systems and symptoms had remained unexplored. By using HERV-V3 high-density microarrays (including over 350k HERV elements and more than 1500 immune-related genes) to interrogate the transcriptomes of peripheral blood mononuclear cells from female patients diagnosed with ME/CFS, FM, or both, and matched healthy controls (n = 43), this study fills this gap of knowledge. Hierarchical clustering of HERV expression profiles strikingly allowed perfect participant assignment into four distinct groups: ME/CFS, FM, co-diagnosed, or healthy, pointing at a potent biomarker value of HERV expression profiles to differentiate between these hard-to-diagnose chronic syndromes. Differentially expressed HERV-immune-gene modules revealed unique profiles for each of the four study groups and highlighting decreased γδ T cells, and increased plasma and resting CD4 memory T cells, correlating with patient symptom severity in ME/CFS. Moreover, activation of HERV sequences coincided with enrichment of binding sequences targeted by transcription factors which recruit SETDB1 and TRIM28, two known epigenetic silencers of HERV, in ME/CFS, offering a mechanistic explanation for the findings. Unexpectedly, HERV expression profiles appeared minimally affected in co-diagnosed patients denoting a new nosological entity with low epigenetic impact, a seemingly relevant aspect for the diagnosis and treatment of this prevalent group of patients.
Collapse
Affiliation(s)
| | | | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern UniversityFort LauderdaleUnited States
| | - Elisa Oltra
- Department of Pathology, School of Health Sciences, Catholic University of ValenciaValenciaSpain
| |
Collapse
|
2
|
Schmidleithner L, Stüve P, Feuerer M. Transposable elements as instructors of the immune system. Nat Rev Immunol 2025:10.1038/s41577-025-01172-3. [PMID: 40301669 DOI: 10.1038/s41577-025-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Transposable elements (TEs) are mobile repetitive nucleic acid sequences that have been incorporated into the genome through spontaneous integration, accounting for almost 50% of human DNA. Even though most TEs are no longer mobile today, studies have demonstrated that they have important roles in different biological processes, such as ageing, embryonic development, and cancer. TEs influence these processes through various mechanisms, including active transposition of TEs contributing to ongoing evolution, transposon transcription generating RNA or protein, and by influencing gene regulation as enhancers. However, how TEs interact with the immune system remains a largely unexplored field. In this Perspective, we describe how TEs might influence different aspects of the immune system, such as innate immune responses, T cell activation and differentiation, and tissue adaptation. Furthermore, TEs can serve as a source of neoantigens for T cells in antitumour immunity. We suggest that TE biology is an important emerging field of immunology and discuss the potential to harness the TE network therapeutically, for example, to improve immunotherapies for cancer and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Chair for Immunology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Vasquez JH, Yuan J, Leow CJ, Crossey E, Shao F, Carty S, Dominguez VA, Lo M, Mizgerd JP, Fetterman JL, Lau NC, Fine A, Jones MR. Somatic Miwi2 modulates mitochondrial function in airway multiciliated cells and exacerbates influenza pathogenesis. iScience 2025; 28:112291. [PMID: 40241756 PMCID: PMC12002665 DOI: 10.1016/j.isci.2025.112291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/02/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
MIWI2, a P element-induced wimpy testes (PIWI) argonaute protein known for suppressing retrotransposons during male gonadogenesis, has an unexplored role in mammalian somatic cells. We identify MIWI2 multiciliated (M2MC) cells as a rare subset of airway multiciliated cells and investigate MIWI2's function in antiviral host defense. We analyzed transcriptomes from Miwi2 heterozygous (Miwi2 +/tom) and deficient (Miwi2 tom/tom) mice following influenza A infection. During infection, Miwi2 deficiency was associated with reduced mitochondrial and ribosomal gene expression in M2MC cells, increased mitochondrial reactive oxygen species (ROS) production and ADP/ATP ratios in multiciliated cells, and enhanced viral clearance and recovery. Additionally, Miwi2-expressing cells exhibited reduced levels of small RNAs derived from nuclear mitochondrial DNA. These findings reveal a previously unrecognized role for Miwi2 in regulating small non-coding RNAs and mitochondrial oxidant production in somatic cells, indicating a function beyond its established germline activities. Our study identifies Miwi2/Piwil4 as a potential factor influencing susceptibility to severe respiratory infections.
Collapse
Affiliation(s)
- Jhonatan Henao Vasquez
- The Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin Yuan
- The Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Chi Jing Leow
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Erin Crossey
- The Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Fengzhi Shao
- The Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Senegal Carty
- The Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Viviana A. Dominguez
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ming Lo
- National Emerging Infectious Diseases Laboratories, Comparative Pathology Laboratory, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Joseph P. Mizgerd
- The Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jessica L. Fetterman
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Alan Fine
- The Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Matthew R. Jones
- The Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Della Valle F, Reddy P, Aguirre Vazquez A, Izpisua Belmonte JC. Reactivation of retrotransposable elements is associated with environmental stress and ageing. Nat Rev Genet 2025:10.1038/s41576-025-00829-y. [PMID: 40175591 DOI: 10.1038/s41576-025-00829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Retrotransposable elements (RTEs) are interspersed repetitive sequences that represent a large portion of eukaryotic genomes. Ancestral expansions of RTEs directly contributed to the shaping of these genomes and to the evolution of different species, particularly mammals. RTE activity is tightly regulated by different epigenetic mechanisms but this control becomes compromised as cells age and RTEs are reactivated. This dysregulation of RTEs leads to perturbation of cell function and organ and organismal homeostasis, which drives ageing and age-related disease. Environmental stress is associated with both ageing-related characteristics and the epigenetic mechanisms that control RTE activity, with accumulating evidence indicating that RTE reactivation mediates the effects of environmental stressors on ageing onset and progression. A better understanding of how RTEs are reactivated and their subsequent biological roles may help the development of therapies against ageing-related phenotypes and diseases.
Collapse
Affiliation(s)
| | - Pradeep Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | | | | |
Collapse
|
5
|
Koutsi M, Pouliou M, Chatzopoulos D, Champezou L, Zagkas K, Vasilogianni M, Kouroukli A, Agelopoulos M. An evolutionarily conserved constellation of functional cis-elements programs the virus-responsive fate of the human (epi)genome. Nucleic Acids Res 2025; 53:gkaf207. [PMID: 40131776 PMCID: PMC11934927 DOI: 10.1093/nar/gkaf207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Human health depends on perplexing defensive cellular responses against microbial pathogens like Viruses. Despite the major effort undertaken, the (epi)genomic mechanisms that human cells utilize to tailor defensive gene expression programs against microbial attacks have remained inadequately understood, mainly due to a significant lack of recording of the in vivo functional cis-regulatory modules (CRMs) of the human genome. Here, we introduce the virus-responsive fate of the human (epi)genome as characterized in naïve and infected cells by functional genomics, computational biology, DNA evolution, and DNA Grammar and Syntax investigations. We discovered that multitudes of novel functional virus-responsive CRMs (vrCRMs) compose typical enhancers (tEs), super-enhancers (SEs), repetitive-DNA enhancers (rDEs), and stand-alone functional genomic stretches that grant human cells regulatory underpinnings for layering basal immunity and eliminating illogical/harmful defensive responses under homeostasis, yet stimulating virus-responsive genes and transposable elements (TEs) upon infection. Moreover, extensive epigenomic reprogramming of previously unknown SE landscapes marks the transition from naïve to antiviral human cell states and involves the functions of the antimicrobial transcription factors (TFs), including interferon response factor 3 (IRF3) and nuclear factor-κB (NF-κB), as well as coactivators and transcriptional apparatus, along with intensive modifications/alterations in histone marks and chromatin accessibility. Considering the polyphyletic evolutionary fingerprints of the composite DNA sequences of the vrCRMs assessed by TFs-STARR-seq, ranging from the animal to microbial kingdoms, the conserved features of antimicrobial TFs and chromatin complexes, and their pluripotent stimulus-induced activation, these findings shed light on how mammalian (epi)genomes evolved their functions to interpret the exogenous stress inflicted and program defensive transcriptional responses against microbial agents. Crucially, many known human short variants, e.g. single-nucleotide polymorphisms (SNPs), insertions, deletions etc., and quantitative trait loci (QTLs) linked to autoimmune diseases, such as multiple sclerosis (MS), systemic lupus erythematosus (SLE), Crohn's disease (CD) etc., were mapped within or vastly proximal (±2.5 kb) to the novel in vivo functional SEs and vrCRMs discovered, thus underscoring the impact of their (mal)functions on human physiology and disease development. Hence, we delved into the virus-responsive fate of the human (epi)genome and illuminated its architecture, function, evolutionary origins, and its significance for cellular homeostasis. These results allow us to chart the "Human hyper-Atlas of virus-infection", an integrated "molecular in silico" encyclopedia situated in the UCSC Genome Browser that benefits our mechanistic understanding of human infectious/(auto)immune diseases development and can facilitate the generation of in vivo preclinical animal models, drug design, and evolution of therapeutic applications.
Collapse
Affiliation(s)
- Marianna A Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Dimitris Chatzopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Konstantinos Zagkas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marili Vasilogianni
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Alexandra G Kouroukli
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| |
Collapse
|
6
|
Feng Y, Cao S, Shi Y, Sun A, Flanagan ME, Leverenz JB, Pieper AA, Jung JU, Cummings J, Fang EF, Zhang P, Cheng F. Human herpesvirus-associated transposable element activation in human aging brains with Alzheimer's disease. Alzheimers Dement 2025; 21:e14595. [PMID: 39985481 PMCID: PMC11846481 DOI: 10.1002/alz.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Human herpesvirus (HHV) has been linked to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. METHODS We leveraged functional genomics data from Religious Orders Study or the Rush Memory and Aging Project (ROS/MAP) and Mount Sinai Brain Bank (MSBB) brain biobanks and single-cell RNA-sequencing data from HHV-infected forebrain organoids to investigate HHV-infection-associated transposable element (TE) dysregulation underlying AD etiologies. RESULTS We identified widespread TE dysregulation in HHV-positive human AD brains, including an astrocyte-specific upregulation of LINE1 subfamily TEs in HHV-positive human AD brains. We further pinpointed astrocyte-specific LINE1 upregulation that could potentially regulate target gene NEAT1 expression via long-range enhancer-promoter chromatin interactions. This LINE1 dysregulation can be partially reversed by the usage of anti-HHV drugs (valacyclovir and acyclovir) in a virus-infected human brain organoid model. Finally, we demonstrated that valacyclovir rescued tau-associated neuropathology and alleviated LINE1 activation in an experimental tau aggregation model. DISCUSSION Our analysis provides associations linking molecular, clinical, and neuropathological AD features with HHV infection, which warrants future clinical validation. HIGHLIGHTS Via analysis of bulk RNA-seq data in two large-scale human brain biobanks, ROS/MAP (n = 109 pathologically confirmed AD and n = 44 cognitively healthy controls) and MSBB (n = 284 AD and n = 150 cognitively healthy controls), we identified widespread TE activation in HHV-positive human AD brains and significantly positive associations of HHV RNA abundance with APOE4 genotype, Braak staging score, and CERAD score. We identified cell type-specific LINE1 upregulation in both microglia and astrocytes of human AD brains via long-range enhancer-promoter chromatin interactions on lncRNA nuclear enriched abundant transcript 1 (NEAT1). We determined that usage of valacyclovir and acyclovir was significantly associated with reduced incidence of AD in a large real-world patient database. Using the HEK293 tau P301S model and U2OS mt-Keima cell model, we determined that valacyclovir treatment rescued tau-associated neuropathology and alleviated activation of LINE1 with increased cellular autophagy-level mechanistically supported clinical benefits of valacyclovir in real-world patient data.
Collapse
Affiliation(s)
- Yayan Feng
- Cleveland Clinic Genome Center, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Shu‐Qin Cao
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | - Yi Shi
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Anna Sun
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Margaret E. Flanagan
- Department of Pathology, Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - James B. Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Lou Ruvo Center for Brain Health, Neurological InstituteCleveland ClinicClevelandOhioUSA
| | - Andrew A. Pieper
- Harrington Discovery InstituteUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
- Geriatric Psychiatry, GRECCLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
- Institute for Transformative Molecular Medicine, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of NeuroscienceCase Western Reserve University, School of MedicineClevelandOhioUSA
| | - Jae U. Jung
- Department of Cancer Biology, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Program of Infectious Biology, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Evandro Fei Fang
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | - Pengyue Zhang
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
7
|
Qi F, Chen X, Wang J, Niu X, Li S, Huang S, Ran X. Genome-wide characterization of structure variations in the Xiang pig for genetic resistance to African swine fever. Virulence 2024; 15:2382762. [PMID: 39092797 PMCID: PMC11299630 DOI: 10.1080/21505594.2024.2382762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/07/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
African swine fever (ASF) is a rapidly fatal viral haemorrhagic fever in Chinese domestic pigs. Although very high mortality is observed in pig farms after an ASF outbreak, clinically healthy and antibody-positive pigs are found in those farms, and viral detection is rare from these pigs. The ability of pigs to resist ASF viral infection may be modulated by host genetic variations. However, the genetic basis of the resistance of domestic pigs against ASF remains unclear. We generated a comprehensive set of structural variations (SVs) in a Chinese indigenous Xiang pig with ASF-resistant (Xiang-R) and ASF-susceptible (Xiang-S) phenotypes using whole-genome resequencing method. A total of 53,589 nonredundant SVs were identified, with an average of 25,656 SVs per individual in the Xiang pig genome, including insertion, deletion, inversion and duplication variations. The Xiang-R group harboured more SVs than the Xiang-S group. The F-statistics (FST) was carried out to reveal genetic differences between two populations using the resequencing data at each SV locus. We identified 2,414 population-stratified SVs and annotated 1,152 Ensembl genes (including 986 protein-coding genes), in which 1,326 SVs might disturb the structure and expression of the Ensembl genes. Those protein-coding genes were mainly enriched in the Wnt, Hippo, and calcium signalling pathways. Other important pathways associated with the ASF viral infection were also identified, such as the endocytosis, apoptosis, focal adhesion, Fc gamma R-mediated phagocytosis, junction, NOD-like receptor, PI3K-Akt, and c-type lectin receptor signalling pathways. Finally, we identified 135 candidate adaptive genes overlapping 166 SVs that were involved in the virus entry and virus-host cell interactions. The fact that some of population-stratified SVs regions detected as selective sweep signals gave another support for the genetic variations affecting pig resistance against ASF. The research indicates that SVs play an important role in the evolutionary processes of Xiang pig adaptation to ASF infection.
Collapse
Affiliation(s)
- Fenfang Qi
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xia Chen
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xi Niu
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Sheng Li
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Shihui Huang
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
8
|
Pizzioli E, Minutolo A, Balestrieri E, Matteucci C, Magiorkinis G, Horvat B. Crosstalk between human endogenous retroviruses and exogenous viruses. Microbes Infect 2024:105427. [PMID: 39349096 DOI: 10.1016/j.micinf.2024.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections of human germ-line cells, which are mostly silenced during evolution, but could be de-repressed and play a pathological role. Infection with some exogenous viruses, including herpesviruses, HIV-1 and SARS-CoV-2, was demonstrated to induce the expression of HERV RNAs and proteins.
Collapse
Affiliation(s)
- Edoardo Pizzioli
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
9
|
Mostoufi SL, Singh ND. Pathogen infection alters the gene expression landscape of transposable elements in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae171. [PMID: 39129654 PMCID: PMC11373657 DOI: 10.1093/g3journal/jkae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
Transposable elements make up substantial proportions of eukaryotic genomes and many are thought to be remnants of ancient viral infections. Current research has begun to highlight the role transposable elements can play in the immune system response to infections. However, most of our knowledge about transposable element expression during infection is limited by the specific host and pathogen factors from each study, making it difficult to compare studies and develop broader patterns regarding the role of transposable elements during infection. Here, we use the tools and resources available in the model, Drosophila melanogaster, to analyze multiple gene expression datasets of flies subject to bacterial, fungal, and viral infections. We analyzed differences in pathogen species, host genotype, host tissue, and sex to understand how these factors impact transposable element expression during infection. Our results highlight both shared and unique transposable element expression patterns between pathogens and suggest a larger effect of pathogen factors over host factors for influencing transposable element expression.
Collapse
Affiliation(s)
- Sabrina L Mostoufi
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
10
|
Giménez-Orenga K, Martín-Martínez E, Oltra E. Over-Representation of Torque Teno Mini Virus 9 in a Subgroup of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Study. Pathogens 2024; 13:751. [PMID: 39338942 PMCID: PMC11435283 DOI: 10.3390/pathogens13090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disorder classified by the WHO as postviral fatigue syndrome (ICD-11 8E49 code). Diagnosing ME/CFS, often overlapping with fibromyalgia (FM), is challenging due to nonspecific symptoms and lack of biomarkers. The etiology of ME/CFS and FM is poorly understood, but evidence suggests viral infections play a critical role. This study employs microarray technology to quantitate viral RNA levels in immune cells from ME/CFS, FM, or co-diagnosed cases, and healthy controls. The results show significant overexpression of the Torque Teno Mini Virus 9 (TTMV9) in a subgroup of ME/CFS patients which correlate with abnormal HERV and immunological profiles. Increased levels of TTMV9 transcripts accurately discriminate this subgroup of ME/CFS patients from the other study groups, showcasing its potential as biomarker for patient stratification and the need for further research into its role in the disease. Validation of the findings seems granted in extended cohorts by continuation studies.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Elisa Oltra
- Department of Pathology, School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
11
|
Kondratov KA, Artamonov AA, Nikitin YV, Velmiskina AA, Mikhailovskii VY, Mosenko SV, Polkovnikova IA, Asinovskaya AY, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. Revealing differential expression patterns of piRNA in FACS blood cells of SARS-CoV-2 infected patients. BMC Med Genomics 2024; 17:212. [PMID: 39143590 PMCID: PMC11325581 DOI: 10.1186/s12920-024-01982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Non-coding RNA expression has shown to have cell type-specificity. The regulatory characteristics of these molecules are impacted by changes in their expression levels. We performed next-generation sequencing and examined small RNA-seq data obtained from 6 different types of blood cells separated by fluorescence-activated cell sorting of severe COVID-19 patients and healthy control donors. In addition to examining the behavior of piRNA in the blood cells of severe SARS-CoV-2 infected patients, our aim was to present a distinct piRNA differential expression portrait for each separate cell type. We observed that depending on the type of cell, different sorted control cells (erythrocytes, monocytes, lymphocytes, eosinophils, basophils, and neutrophils) have altering piRNA expression patterns. After analyzing the expression of piRNAs in each set of sorted cells from patients with severe COVID-19, we observed 3 significantly elevated piRNAs - piR-33,123, piR-34,765, piR-43,768 and 9 downregulated piRNAs in erythrocytes. In lymphocytes, all 19 piRNAs were upregulated. Monocytes were presented with a larger amount of statistically significant piRNA, 5 upregulated (piR-49039 piR-31623, piR-37213, piR-44721, piR-44720) and 35 downregulated. It has been previously shown that piR-31,623 has been associated with respiratory syncytial virus infection, and taking in account the major role of piRNA in transposon silencing, we presume that the differential expression patterns which we observed could be a signal of indirect antiviral activity or a specific antiviral cell state. Additionally, in lymphocytes, all 19 piRNAs were upregulated.
Collapse
Affiliation(s)
- Kirill A Kondratov
- City Hospital, No. 40 St, Petersburg, 197706, Russia.
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia.
- Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Yuri V Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Anastasiya A Velmiskina
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Sergey V Mosenko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Irina A Polkovnikova
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Anna Yu Asinovskaya
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Svetlana V Apalko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Andrey M Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Sergey G Scherbak
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
12
|
Apostolou E, Rosén A. Epigenetic reprograming in myalgic encephalomyelitis/chronic fatigue syndrome: A narrative of latent viruses. J Intern Med 2024; 296:93-115. [PMID: 38693641 DOI: 10.1111/joim.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disease presenting with severe fatigue, post-exertional malaise, and cognitive disturbances-among a spectrum of symptoms-that collectively render the patient housebound or bedbound. Epigenetic studies in ME/CFS collectively confirm alterations and/or malfunctions in cellular and organismal physiology associated with immune responses, cellular metabolism, cell death and proliferation, and neuronal and endothelial cell function. The sudden onset of ME/CFS follows a major stress factor that, in approximately 70% of cases, involves viral infection, and ME/CFS symptoms overlap with those of long COVID. Viruses primarily linked to ME/CFS pathology are the symbiotic herpesviruses, which follow a bivalent latent-lytic lifecycle. The complex interaction between viruses and hosts involves strategies from both sides: immune evasion and persistence by the viruses, and immune activation and viral clearance by the host. This dynamic interaction is imperative for herpesviruses that facilitate their persistence through epigenetic regulation of their own and the host genome. In the current article, we provide an overview of the epigenetic signatures demonstrated in ME/CFS and focus on the potential strategies that latent viruses-particularly Epstein-Barr virus-may employ in long-term epigenetic reprograming in ME/CFS. Epigenetic studies could aid in elucidating relevant biological pathways impacted in ME/CFS and reflect the physiological variations among the patients that stem from environmental triggers, including exogenous viruses and/or altered viral activity.
Collapse
Affiliation(s)
- Eirini Apostolou
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Rosén
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Guo X, Zhao Y, You F. MOI is a comprehensive database collecting processed multi-omics data associated with viral infection. Sci Rep 2024; 14:14725. [PMID: 38926513 PMCID: PMC11208532 DOI: 10.1038/s41598-024-65629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Viral infections pose significant public health challenges, exemplified by the global impact of COVID-19 caused by SARS-CoV-2. Understanding the intricate molecular mechanisms governing virus-host interactions is pivotal for effective intervention strategies. Despite the burgeoning multi-omics data on viral infections, a centralized database elucidating host responses to viruses remains lacking. In response, we have developed a comprehensive database named 'MOI' (available at http://www.fynn-guo.cn/ ), specifically designed to aggregate processed Multi-Omics data related to viral Infections. This meticulously curated database serves as a valuable resource for conducting detailed investigations into virus-host interactions. Leveraging high-throughput sequencing data and metadata from PubMed and Gene Expression Omnibus (GEO), MOI comprises over 3200 viral-infected samples, encompassing human and murine infections. Standardized processing pipelines ensure data integrity, including bulk RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq), and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). MOI offers user-friendly interfaces presenting comprehensive cell marker tables, gene expression data, and epigenetic landscape charts. Analytical tools for DNA sequence conversion, FPKM calculation, differential gene expression, and Gene Ontology (GO)/ Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment enhance data interpretation. Additionally, MOI provides 16 visualization plots for intuitive data exploration. In summary, MOI serves as a valuable repository for researchers investigating virus-host interactions. By centralizing and facilitating access to multi-omics data, MOI aims to advance our understanding of viral pathogenesis and expedite the development of therapeutic interventions.
Collapse
Affiliation(s)
- Xuefei Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China.
| | - Yang Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Bravo JI, Mizrahi CR, Kim S, Zhang L, Suh Y, Benayoun BA. An eQTL-based approach reveals candidate regulators of LINE-1 RNA levels in lymphoblastoid cells. PLoS Genet 2024; 20:e1011311. [PMID: 38848448 PMCID: PMC11189215 DOI: 10.1371/journal.pgen.1011311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Long interspersed element 1 (LINE-1; L1) are a family of transposons that occupy ~17% of the human genome. Though a small number of L1 copies remain capable of autonomous transposition, the overwhelming majority of copies are degenerate and immobile. Nevertheless, both mobile and immobile L1s can exert pleiotropic effects (promoting genome instability, inflammation, or cellular senescence) on their hosts, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSD17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for regulators of transposon RNA levels.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, California, United States of America
| | - Chanelle R. Mizrahi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- USC Gerontology Enriching MSTEM to Enhance Diversity in Aging Program, University of Southern California, Los Angeles, California, United States of America
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, United States of America
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, United States of America
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, California, United States of America
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, California, United States of America
- USC Stem Cell Initiative, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Dopkins N, Fei T, Michael S, Liotta N, Guo K, Mickens KL, Barrett BS, Bendall ML, Dillon SM, Wilson CC, Santiago ML, Nixon DF. Endogenous retroelement expression in the gut microenvironment of people living with HIV-1. EBioMedicine 2024; 103:105133. [PMID: 38677181 PMCID: PMC11061259 DOI: 10.1016/j.ebiom.2024.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Endogenous retroelements (EREs), including human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs), comprise almost half of the human genome. Our previous studies of the interferome in the gut suggest potential mechanisms regarding how IFNb may drive HIV-1 gut pathogenesis. As ERE activity is suggested to partake in type 1 immune responses and is incredibly sensitive to viral infections, we sought to elucidate underlying interactions between ERE expression and gut dynamics in people living with HIV-1 (PLWH). METHODS ERE expression profiles from bulk RNA sequencing of colon biopsies and PBMC were compared between a cohort of PLWH not on antiretroviral therapy (ART) and uninfected controls. FINDINGS 59 EREs were differentially expressed in the colon of PLWH when compared to uninfected controls (padj <0.05 and FC ≤ -1 or ≥ 1) [Wald's Test]. Of these 59, 12 EREs were downregulated in PLWH and 47 were upregulated. Colon expression of the ERE loci LTR19_12p13.31 and L1FLnI_1q23.1s showed significant correlations with certain gut immune cell subset frequencies in the colon. Furthermore L1FLnI_1q23.1s showed a significant upregulation in peripheral blood mononuclear cells (PBMCs) of PLWH when compared to uninfected controls suggesting a common mechanism of differential ERE expression in the colon and PBMC. INTERPRETATION ERE activity has been largely understudied in genomic characterizations of human pathologies. We show that the activity of certain EREs in the colon of PLWH is deregulated, supporting our hypotheses that their underlying activity could function as (bio)markers and potential mediators of pathogenesis in HIV-1 reservoirs. FUNDING US NIH grants NCI CA260691 (DFN) and NIAID UM1AI164559 (DFN).
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Tongyi Fei
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Stephanie Michael
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas Liotta
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaylee L Mickens
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brad S Barrett
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Stephanie M Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cara C Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mario L Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Farahmandnejad M, Mosaddeghi P, Dorvash M, Sakhteman A, Negahdaripour M, Faridi P. Correlation of Myeloid-Derived Suppressor Cell Expansion with Upregulated Transposable Elements in Severe COVID-19 Unveiled in Single-Cell RNA Sequencing Reanalysis. Biomedicines 2024; 12:315. [PMID: 38397917 PMCID: PMC10887269 DOI: 10.3390/biomedicines12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Some studies have investigated the potential role of transposable elements (TEs) in COVID-19 pathogenesis and complications. However, to the best of our knowledge, there is no study to examine the possible association of TE expression in cell functions and its potential role in COVID-19 immune response at the single-cell level. In this study, we reanalyzed single-cell RNA seq data of bronchoalveolar lavage (BAL) samples obtained from six severe COVID-19 patients and three healthy donors to assess the probable correlation of TE expression with the immune responses induced by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in COVID-19 patients. Our findings indicate that the expansion of myeloid-derived suppressor cells (MDSCs) may be a characteristic feature of COVID-19. Additionally, a significant increase in TE expression in MDSCs was observed. This upregulation of TEs in COVID-19 may be linked to the adaptability of these cells in response to their microenvironments. Furthermore, it appears that the identification of overexpressed TEs by pattern recognition receptors (PRRs) in MDSCs may enhance the suppressive capacity of these cells. Thus, this study emphasizes the crucial role of TEs in the functionality of MDSCs during COVID-19.
Collapse
Affiliation(s)
- Mitra Farahmandnejad
- Quality Control of Drug Products Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Pouria Mosaddeghi
- Medicinal Plants Processing Research Center, School of Pharmacy, Shiraz University of Medical Science, Shiraz 71348-14336, Iran;
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammadreza Dorvash
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Amirhossein Sakhteman
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 80333 Munich, Germany;
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Pouya Faridi
- Monash Proteomics and Metabolomics Platform, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
17
|
Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. RNA Biol 2024; 21:11-27. [PMID: 39396200 PMCID: PMC11485995 DOI: 10.1080/15476286.2024.2409607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kei Nishimori
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shota Amano
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yukiko Fumoto
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Han M, Perkins MH, Novaes LS, Xu T, Chang H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Front Genet 2023; 14:1290146. [PMID: 38098473 PMCID: PMC10719622 DOI: 10.3389/fgene.2023.1290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.
Collapse
Affiliation(s)
- Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo Santana Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
19
|
Bravo JI, Mizrahi CR, Kim S, Zhang L, Suh Y, Benayoun BA. An eQTL-based Approach Reveals Candidate Regulators of LINE-1 RNA Levels in Lymphoblastoid Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553416. [PMID: 37645920 PMCID: PMC10461994 DOI: 10.1101/2023.08.15.553416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Long interspersed element 1 (L1) are a family of autonomous, actively mobile transposons that occupy ~17% of the human genome. A number of pleiotropic effects induced by L1 (promoting genome instability, inflammation, or cellular senescence) have been observed, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSDB17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for transposon transcriptional regulators.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Chanelle R. Mizrahi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- USC Gerontology Enriching MSTEM to Enhance Diversity in Aging Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Meng FW, Murphy KE, Makowski CE, Delatte B, Murphy PJ. Competition for H2A.Z underlies the developmental impacts of repetitive element de-repression. Development 2023; 150:dev202338. [PMID: 37938830 PMCID: PMC10651094 DOI: 10.1242/dev.202338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
The histone variant H2A.Z is central to early embryonic development, determining transcriptional competency through chromatin regulation of gene promoters and enhancers. In addition to genic loci, we find that H2A.Z resides at a subset of evolutionarily young repetitive elements, including DNA transposons, long interspersed nuclear elements and long terminal repeats, during early zebrafish development. Moreover, increases in H2A.Z occur when repetitive elements become transcriptionally active. Acquisition of H2A.Z corresponds with a reduction in the levels of the repressive histone modification H3K9me3 and a moderate increase in chromatin accessibility. Notably, however, de-repression of repetitive elements also leads to a significant reduction in H2A.Z over non-repetitive genic loci. Genic loss of H2A.Z is accompanied by transcriptional silencing at adjacent coding sequences, but remarkably, these impacts are mitigated by augmentation of total H2A.Z protein via transgenic overexpression. Our study reveals that levels of H2A.Z protein determine embryonic sensitivity to de-repression of repetitive elements, that repetitive elements can function as a nuclear sink for epigenetic factors and that competition for H2A.Z greatly influences overall transcriptional output during development. These findings uncover general mechanisms in which counteractive biological processes underlie phenotypic outcomes.
Collapse
Affiliation(s)
- Fanju W. Meng
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | - Benjamin Delatte
- Advanced Research Laboratory, Active Motif, 1914 Palomar Oaks Way STE 150, Carlsbad, CA 92008, USA
| | | |
Collapse
|
21
|
Kuang M, Zhao Y, Yu H, Li S, Liu T, Chen L, Chen J, Luo Y, Guo X, Wei X, Li Y, Zhang Z, Wang D, You F. XAF1 promotes anti-RNA virus immune responses by regulating chromatin accessibility. SCIENCE ADVANCES 2023; 9:eadg5211. [PMID: 37595039 PMCID: PMC10438455 DOI: 10.1126/sciadv.adg5211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
A rapid induction of antiviral genes is critical for eliminating viruses, which requires activated transcription factors and opened chromatins to initiate transcription. However, it remains elusive how the accessibility of specific chromatin is regulated during infection. Here, we found that XAF1 functioned as an epigenetic regulator that liberated repressed chromatin after infection. Upon RNA virus infection, MAVS recruited XAF1 and TBK1. TBK1 phosphorylated XAF1 at serine-252 and promoted its nuclear translocation. XAF1 then interacted with TRIM28 with the guidance of IRF1 to the specific locus of antiviral genes. XAF1 de-SUMOylated TRIM28 through its PHD domain, which led to increased accessibility of the chromatin and robust induction of antiviral genes. XAF1-deficient mice were susceptible to RNA virus due to impaired induction of antiviral genes. Together, XAF1 acts as an epigenetic regulator that promotes the opening of chromatin and activation of antiviral immunity by targeting TRIM28 during infection.
Collapse
Affiliation(s)
- Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Yingchi Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Haitao Yu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Siji Li
- Ningbo first hospital, Ningbo hospital Zhejiang university, Ningbo, China
| | - Tianyi Liu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Luoying Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Jingxuan Chen
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xixian New Area, Shaanxi Province 712046, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Xuefei Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Xuemei Wei
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Yunfei Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Dandan Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
22
|
Zhang M, Sun W, You X, Xu D, Wang L, Yang J, Li E, He S. LINE-1 repression in Epstein-Barr virus-associated gastric cancer through viral-host genome interaction. Nucleic Acids Res 2023; 51:4867-4880. [PMID: 36942479 PMCID: PMC10250212 DOI: 10.1093/nar/gkad203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
Long INterspersed Element 1 (LINE-1 or L1) acts as a major remodeling force in genome regulation and evolution. Accumulating evidence shows that virus infection impacts L1 expression, potentially impacting host antiviral response and diseases. The underlying regulation mechanism is unclear. Epstein-Barr virus (EBV), a double-stranded DNA virus linked to B-cell and epithelial malignancies, is known to have viral-host genome interaction, resulting in transcriptional rewiring in EBV-associated gastric cancer (EBVaGC). By analyzing publicly available datasets from the Gene Expression Omnibus (GEO), we found that EBVaGC has L1 transcriptional repression compared with EBV-negative gastric cancer (EBVnGC). More specifically, retrotransposition-associated young and full-length L1s (FL-L1s) were among the most repressed L1s. Epigenetic alterations, especially increased H3K9me3, were observed on FL-L1s. H3K9me3 deposition was potentially attributed to increased TASOR expression, a key component of the human silencing hub (HUSH) complex for H3K9 trimethylation. The 4C- and HiC-seq data indicated that the viral DNA interacted in the proximity of the TASOR enhancer, strengthening the loop formation between the TASOR enhancer and its promoter. These results indicated that EBV infection is associated with increased H3K9me3 deposition, leading to L1 repression. This study uncovers a regulation mechanism of L1 expression by chromatin topology remodeling associated with viral-host genome interaction in EBVaGC.
Collapse
Affiliation(s)
- Mengyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Center, Medical School, Nanjing University, Yancheng 224000, China
| | - Weikang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaoxin You
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Dongge Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Lingling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jingping Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Institute of Medical Virology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Center, Medical School, Nanjing University, Yancheng 224000, China
| |
Collapse
|
23
|
Chen X, Pacis A, Aracena KA, Gona S, Kwan T, Groza C, Lin YL, Sindeaux R, Yotova V, Pramatarova A, Simon MM, Pastinen T, Barreiro LB, Bourque G. Transposable elements are associated with the variable response to influenza infection. CELL GENOMICS 2023; 3:100292. [PMID: 37228757 PMCID: PMC10203045 DOI: 10.1016/j.xgen.2023.100292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023]
Abstract
Influenza A virus (IAV) infections are frequent every year and result in a range of disease severity. Here, we wanted to explore the potential contribution of transposable elements (TEs) to the variable human immune response. Transcriptome profiling in monocyte-derived macrophages from 39 individuals following IAV infection revealed significant inter-individual variation in viral load post-infection. Using transposase-accessible chromatin using sequencing (ATAC-seq), we identified a set of TE families with either enhanced or reduced accessibility upon infection. Of the enhanced families, 15 showed high variability between individuals and had distinct epigenetic profiles. Motif analysis showed an association with known immune regulators (e.g., BATFs, FOSs/JUNs, IRFs, STATs, NFkBs, NFYs, and RELs) in stably enriched families and with other factors in variable families, including KRAB-ZNFs. We showed that TEs and host factors regulating TEs were predictive of viral load post-infection. Our findings shed light on the role TEs and KRAB-ZNFs may play in inter-individual variation in immunity.
Collapse
Affiliation(s)
- Xun Chen
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Alain Pacis
- Canadian Center for Computational Genomics, McGill University, Montréal, QC H3A 0G1, Canada
| | | | - Saideep Gona
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tony Kwan
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC H3A 0G1, Canada
| | - Cristian Groza
- Quantitative Life Science, McGill University, Montréal, QC H3A 1E3, Canada
| | - Yen Lung Lin
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Renata Sindeaux
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Vania Yotova
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Albena Pramatarova
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC H3A 0G1, Canada
| | - Marie-Michelle Simon
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC H3A 0G1, Canada
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Hospital and Research Institute, Kansas City, MO 64108, USA
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Luis B. Barreiro
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Guillaume Bourque
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Canadian Center for Computational Genomics, McGill University, Montréal, QC H3A 0G1, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC H3A 0G1, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
24
|
Fan J, Yang S, Wennmann JT, Wang D, Jehle JA. The distribution and characteristic of two transposable elements in the genome of Cydia pomonella granulovirus and codling moth. Mol Phylogenet Evol 2023; 182:107745. [PMID: 36842732 DOI: 10.1016/j.ympev.2023.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Baculoviruses are capable to acquire insect host transposable elements (TEs) in their genomes and are hypothesized as possible vectors of insect transposons between Lepidopteran species. Here, we investigated the host origin of two TEs, namely the Tc1/mariner-like element TCp3.2 and a 0.7 kbp insertion sequence (IS07), found in the genome of different isolates of Cydia pomonella granulovirus (CpGV), a member of the Betabaculovirus genus. The sequences of both TEs were searched for in the full genome sequence database of codling moth (CM, Cydia pomonella L.). A total of eleven TCp3.2 TE copies and 76 copies of the IS07 fragments were identified in the CM genome. These TEs were distributed over the 22 autosomes and the Z chromosome (chr1) of CM, except chr6, chr12, chr16, chr23, chr27 and the W chromosome (chr29). TCp3.2 copies with two transposase genes in opposite direction, representing a novel feature, were identified on chr10 and chr18. The TCp3.2 transposase was characterized by DD41D motif of classic Tc1/mariner transposons, consisting of DNA-binding domain, catalytic domain and nuclear localization signal (NLS). Transcription analyses of uninfected and CpGV-infected CM larvae suggested a doubling of the TCp3.2 transposase transcription rate in virus infected larvae. Furthermore, IS07 insertion into the CpGV genome apparently added new transcription initiation sites to the viral genome. The global analysis of the distribution of two TEs in the genome of CM addressed the influx of mobile TEs from CM to CpGV, a genetic process that contributes to the population diversity of baculoviruses.
Collapse
Affiliation(s)
- Jiangbin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany
| | - Shili Yang
- Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, Heinrichstraße. 243, 64287 Darmstadt, Germany.
| |
Collapse
|
25
|
Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses. Viruses 2023; 15:v15030768. [PMID: 36992477 PMCID: PMC10051318 DOI: 10.3390/v15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
The zebrafish (Danio rerio) represents an increasingly important model organism in virology. We evaluated its utility in the study of economically important viruses from the genus Cyprinivirus (anguillid herpesvirus 1, cyprinid herpesvirus 2 and cyprinid herpesvirus 3 (CyHV-3)). This revealed that zebrafish larvae were not susceptible to these viruses after immersion in contaminated water, but that infections could be established using artificial infection models in vitro (zebrafish cell lines) and in vivo (microinjection of larvae). However, infections were transient, with rapid viral clearance associated with apoptosis-like death of infected cells. Transcriptomic analysis of CyHV-3-infected larvae revealed upregulation of interferon-stimulated genes, in particular those encoding nucleic acid sensors, mediators of programmed cell death and related genes. It was notable that uncharacterized non-coding RNA genes and retrotransposons were also among those most upregulated. CRISPR/Cas9 knockout of the zebrafish gene encoding protein kinase R (PKR) and a related gene encoding a protein kinase containing Z-DNA binding domains (PKZ) had no impact on CyHV-3 clearance in larvae. Our study strongly supports the importance of innate immunity-virus interactions in the adaptation of cypriniviruses to their natural hosts. It also highlights the potential of the CyHV-3-zebrafish model, versus the CyHV-3-carp model, for study of these interactions.
Collapse
|
26
|
Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses 2023; 171:111015. [PMID: 36718314 PMCID: PMC9876036 DOI: 10.1016/j.mehy.2023.111015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/08/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Therapeutic applications of synthetic mRNA were proposed more than 30 years ago, and are currently the basis of one of the vaccine platforms used at a massive scale as part of the public health strategy to get COVID-19 under control. To date, there are no published studies on the biodistribution, cellular uptake, endosomal escape, translation rates, functional half-life and inactivation kinetics of synthetic mRNA, rates and duration of vaccine-induced antigen expression in different cell types. Furthermore, despite the assumption that there is no possibility of genomic integration of therapeutic synthetic mRNA, only one recent study has examined interactions between vaccine mRNA and the genome of transfected cells, and reported that an endogenous retrotransposon, LINE-1 is unsilenced following mRNA entry to the cell, leading to reverse transcription of full length vaccine mRNA sequences, and nuclear entry. This finding should be a major safety concern, given the possibility of synthetic mRNA-driven epigenetic and genomic modifications arising. We propose that in susceptible individuals, cytosolic clearance of nucleotide modified synthetic (nms-mRNAs) is impeded. Sustained presence of nms-mRNA in the cytoplasm deregulates and activates endogenous transposable elements (TEs), causing some of the mRNA copies to be reverse transcribed. The cytosolic accumulation of the nms-mRNA and the reverse transcribed cDNA molecules activates RNA and DNA sensory pathways. Their concurrent activation initiates a synchronized innate response against non-self nucleic acids, prompting type-I interferon and pro-inflammatory cytokine production which, if unregulated, leads to autoinflammatory and autoimmune conditions, while activated TEs increase the risk of insertional mutagenesis of the reverse transcribed molecules, which can disrupt coding regions, enhance the risk of mutations in tumour suppressor genes, and lead to sustained DNA damage. Susceptible individuals would then expectedly have an increased risk of DNA damage, chronic autoinflammation, autoimmunity and cancer. In light of the current mass administration of nms-mRNA vaccines, it is essential and urgent to fully understand the intracellular cascades initiated by cellular uptake of synthetic mRNA and the consequences of these molecular events.
Collapse
|
27
|
Gehlert FO, Sauerwein T, Weidenbach K, Repnik U, Hallack D, Förstner KU, Schmitz RA. Dual-RNAseq Analysis Unravels Virus-Host Interactions of MetSV and Methanosarcina mazei. Viruses 2022; 14:2585. [PMID: 36423194 PMCID: PMC9694453 DOI: 10.3390/v14112585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Methanosarcina spherical virus (MetSV), infecting Methanosarcina species, encodes 22 genes, but their role in the infection process in combination with host genes has remained unknown. To study the infection process in detail, infected and uninfected M. mazei cultures were compared using dual-RNAseq, qRT-PCRs, and transmission electron microscopy (TEM). The transcriptome analysis strongly indicates a combined role of virus and host genes in replication, virus assembly, and lysis. Thereby, 285 host and virus genes were significantly regulated. Within these 285 regulated genes, a network of the viral polymerase, MetSVORF6, MetSVORF5, MetSVORF2, and the host genes encoding NrdD, NrdG, a CDC48 family protein, and a SSB protein with a role in viral replication was postulated. Ultrastructural analysis at 180 min p.i. revealed many infected cells with virus particles randomly scattered throughout the cytoplasm or attached at the cell surface, and membrane fragments indicating cell lysis. Dual-RNAseq and qRT-PCR analyses suggested a multifactorial lysis reaction in potential connection to the regulation of a cysteine proteinase, a pirin-like protein and a HicB-solo protein. Our study's results led to the first preliminary infection model of MetSV infecting M. mazei, summarizing the key infection steps as follows: replication, assembly, and host cell lysis.
Collapse
Affiliation(s)
- Finn O. Gehlert
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Till Sauerwein
- ZB MED, Information Centre for Life Sciences, 50931 Cologne, Germany
| | - Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Urska Repnik
- Central Microscopy, Christian Albrechts University, 24118 Kiel, Germany
| | - Daniela Hallack
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | | | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| |
Collapse
|
28
|
Giménez-Orenga K, Pierquin J, Brunel J, Charvet B, Martín-Martínez E, Perron H, Oltra E. HERV-W ENV antigenemia and correlation of increased anti-SARS-CoV-2 immunoglobulin levels with post-COVID-19 symptoms. Front Immunol 2022; 13:1020064. [PMID: 36389746 PMCID: PMC9647063 DOI: 10.3389/fimmu.2022.1020064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 08/02/2023] Open
Abstract
Due to the wide scope and persistence of COVID-19´s pandemic, post-COVID-19 condition represents a post-viral syndrome of unprecedented dimensions. SARS-CoV-2, in line with other infectious agents, has the capacity to activate dormant human endogenous retroviral sequences ancestrally integrated in human genomes (HERVs). This activation was shown to relate to aggravated COVID-19 patient´s symptom severity. Despite our limited understanding of how HERVs are turned off upon infection clearance, or how HERVs mediate long-term effects when their transcription remains aberrantly on, the participation of these elements in neurologic disease, such as multiple sclerosis, is already settling the basis for effective therapeutic solutions. These observations support an urgent need to identify the mechanisms that lead to HERV expression with SARS-CoV-2 infection, on the one hand, and to answer whether persistent HERV expression exists in post-COVID-19 condition, on the other. The present study shows, for the first time, that the HERV-W ENV protein can still be actively expressed long after SARS-CoV-2 infection is resolved in post-COVID-19 condition patients. Moreover, increased anti-SARS-CoV-2 immunoglobulins in post-COVID-19 condition, particularly high anti-SARS-CoV-2 immunoglobulin levels of the E isotype (IgE), seem to strongly correlate with deteriorated patient physical function (r=-0.8057, p<0.01). These results indicate that HERV-W ENV antigenemia and anti-SARS-CoV-2 IgE serology should be further studied to better characterize post-COVID-19 condition pathogenic drivers potentially differing in subsets of patients with various symptoms. They also point out that such biomarkers may serve to design therapeutic options for precision medicine in post-COVID-19 condition.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | | | | | | | - Hervé Perron
- Geneuro-Innovation, Bioparc Laënnec, Lyon, France
- GeNeuro, Geneva, Switzerland
| | - Elisa Oltra
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
29
|
Guerriaud M, Kohli E. RNA-based drugs and regulation: Toward a necessary evolution of the definitions issued from the European union legislation. Front Med (Lausanne) 2022; 9:1012497. [PMID: 36325384 PMCID: PMC9618588 DOI: 10.3389/fmed.2022.1012497] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022] Open
Abstract
Many RNA-based drugs, both vaccines and non-vaccines, are under development or even approved. They include coding mRNAs and non-coding (nc) RNAs among them antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), micro-RNAs (miRNAs), small activating RNAs (saRNAs), RNA aptamers and RNA guides. According to the European Union (EU) legislation, these products can be currently categorized into different regulatory statuses, depending, for vaccines, on their target (infectious disease or not) and, for other drugs, on how they are obtained (chemically or biologically). This classification is fundamental to the type of marketing authorization (MA), and therefore to the controls to be performed, from preclinical stages through clinical trials to pharmacovigilance, to meet the safety requirements for patients. However, the current rules raise several problems, in particular the risk, because technology is evolving, to have similar RNA drugs being covered by very different legal statuses and the lack of international harmonization. The objectives of this study are (i) to review how RNA medicinal products are currently legally categorized in the EU and especially whether they fall under the status of gene therapy medicinal products (GTMP), a regulatory status belonging to advanced therapy medicinal products (ATMP), (ii) to discuss the issues generated by this classification, with a focus on the heterogeneity of statuses of these products, the differences with the American and ICH definitions and the potential impact on the safety requirements.
Collapse
Affiliation(s)
- Mathieu Guerriaud
- CREDIMI Laboratory EA 7532 and Laboratory of Excellence LipSTIC ANR-11-LABX-0021, Faculty of Health Sciences (Pharmacy), University of Burgundy, Dijon, France
- *Correspondence: Mathieu Guerriaud,
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labelled Ligue Nationale Contre le Cancer and Laboratory of Excellence LipSTIC ANR-11-LABX-0021, Faculty of Health Sciences (Pharmacy), University of Burgundy, Dijon, France
| |
Collapse
|
30
|
Li Y, Yang J, Shen S, Wang W, Liu N, Guo H, Wei W. SARS-CoV-2-encoded inhibitors of human LINE-1 retrotransposition. J Med Virol 2022; 95:e28135. [PMID: 36085352 PMCID: PMC9538743 DOI: 10.1002/jmv.28135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS-CoV-2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS-CoV-2 on host cells remain elusive. Here, we investigated the effects of SARS-CoV-2-encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well-established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS-CoV-2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti-L1 activities mediated by SARS-CoV-2-encoded inhibitors suggest that SARS-CoV-2 employs different strategies to optimize the host genetic environment.
Collapse
Affiliation(s)
- Yan Li
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Siyu Shen
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Wei Wang
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Nian Liu
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Haoran Guo
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First HospitalJilin UniversityChangchunJilinChina
| | - Wei Wei
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First HospitalJilin UniversityChangchunJilinChina
| |
Collapse
|
31
|
Sorek M, Meshorer E, Schlesinger S. Impaired activation of transposable elements in SARS-CoV-2 infection. EMBO Rep 2022; 23:e55101. [PMID: 35972201 PMCID: PMC9442302 DOI: 10.15252/embr.202255101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence shows that transposable elements (TEs) are induced in response to viral infections. This TE induction is suggested to trigger a robust and durable interferon response, providing a host defense mechanism. Here, we analyze TE expression changes in response to SARS-CoV-2 infection in different human cellular models. Unlike other viruses, SARS-CoV-2 infection does not lead to global upregulation of TEs in primary cells. We report a correlation between TEs activation and induction of interferon-related genes, suggesting that failure to activate TEs may account for the weak interferon response. Moreover, we identify two variables that explain most of the observed diverseness in immune responses: basal expression levels of TEs in the pre-infected cells and the viral load. Finally, analyzing the SARS-CoV-2 interactome and the epigenetic landscape around the TEs activated following infection, we identify SARS-CoV-2 interacting proteins, which may regulate chromatin structure and TE transcription. This work provides a possible functional explanation for SARS-CoV-2 success in its fight against the host immune system and suggests that TEs could serve as potential drug targets for COVID-19.
Collapse
Affiliation(s)
- Matan Sorek
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Animal Sciences, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Schlesinger
- Department of Animal Sciences, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
32
|
Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel) 2022; 13:719. [PMID: 35627104 PMCID: PMC9141755 DOI: 10.3390/genes13050719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis, two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on a large scale in the general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge about mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I show that the sequence features of mRNA vaccines meet all known requirements for retroposition using L1 elements-the most abundant autonomously active retrotransposons in the human genome. In fact, many factors associated with mRNA vaccines increase the possibility of their L1-mediated retroposition. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
33
|
Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr Issues Mol Biol 2022; 44:1115-1126. [PMID: 35723296 PMCID: PMC8946961 DOI: 10.3390/cimb44030073] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.
Collapse
|
34
|
Characterization of influenza A virus induced transposons reveals a subgroup of transposons likely possessing the regulatory role as eRNAs. Sci Rep 2022; 12:2188. [PMID: 35140280 PMCID: PMC8828846 DOI: 10.1038/s41598-022-06196-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/25/2022] [Indexed: 01/02/2023] Open
Abstract
Although many studies have observed genome-wide host transposon expression alteration during viral infection, the mechanisms of induction and the impact on the host remain unclear. Utilizing recently published influenza A virus (IAV) time series data and ENCODE functional genomics data, we characterized virus induced host differentially expressed transposons (virus-induced-TE) by investigating genome-wide spatial and functional relevance between the virus-induced-TEs and epigenomic markers (e.g. histone modification and chromatin remodelers). We found that a significant fraction of virus-induced-TEs are derived from host enhancer regions, where CHD4 binding and/or H3K27ac occupancy is high or H3K9me3 occupancy is low. By overlapping virus-induced-TEs to human enhancer RNAs (eRNAs), we discovered that a proportion of virus-induced-TEs are either eRNAs or part of enhancer RNAs. Upon further analysis of the eRNA targeted genes, we found that the virus-induced-TE related eRNA targets are overrepresented in differentially expressed host genes of IAV infected samples. Our results suggest that changing chromatin accessibility from repressive to permissive in the transposon docked enhancer regions to regulate host downstream gene expression is potentially one of the virus and host cell interaction mechanisms, where transposons are likely important regulatory genomic elements. Our study provides a new insight into the mechanisms of virus-host interaction and may lead to novel strategies for prevention and therapeutics of IAV and other virus infectious diseases.
Collapse
|
35
|
Hale BG. Antiviral immunity triggered by infection-induced host transposable elements. Curr Opin Virol 2022; 52:211-216. [PMID: 34959082 DOI: 10.1016/j.coviro.2021.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Host silencing of transposable elements (TEs) is critical to prevent genome damage and inappropriate inflammation. However, new evidence suggests that a virus-infected host may re-activate TEs and co-opt them for antiviral defense. RNA-Seq and specialized bioinformatics have revealed the diversity of virus infections that induce TEs. Furthermore, studies with influenza virus have uncovered how infection-triggered changes to the SUMOylation of TRIM28, an epigenetic co-repressor, lead to TE de-repression. Importantly, there is a growing appreciation of how de-repressed TEs stimulate antiviral gene expression, either via cis-acting enhancer functions or via their recognition as viral mimetics by innate immune nucleic acid sensors (e.g. RIG-I, mda-5 and cGAS). Understanding how viruses trigger, and counteract, TE-based antiviral immunity should provide insights into pathogenic mechanisms.
Collapse
Affiliation(s)
- Benjamin G Hale
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| |
Collapse
|
36
|
Lin HH, Horie M, Tomonaga K. A comprehensive profiling of innate immune responses in Eptesicus bat cells. Microbiol Immunol 2021; 66:97-112. [PMID: 34842304 DOI: 10.1111/1348-0421.12952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Bats (the order Chiroptera), including those of the genus Eptesicus, have been reported to serve as reservoirs of several zoonotic viruses. Notably, bats have been reported to lack obvious symptoms of infection with such viruses and are thought to have unique immune system responses. However, the responses of their innate immune system, the first line of immunity, remain largely unclear. Here, we comprehensively analyzed the expression profiles in two Eptesicus bat cell lines to investigate their innate immune responses. The gene expression profiles after polyinosinic-polycytidylic acid (poly (I:C)) induction were similar between the two bat cell lines, but uniquely upregulated differentially expressed genes were also identified. We also revealed that the upregulated genes of Eptesicus bat cells were distinct from those of human epithelial cells in response to induction. Moreover, the basal expression levels of several immune-related genes were higher in bat cells than in human cells. We also identified unannotated novel transcripts that were upregulated after induction and novel microRNAs expressed in bat cells, some of which were upregulated by poly (I:C) treatment. This is the first report to illustrate the innate immune response in Eptesicus bat cells; therefore, this study provides basic and novel insights into bat innate immunity. Our data represent a valuable resource for future studies into bat immunity and the biology of Eptesicus bats. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hsien-Hen Lin
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masayuki Horie
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto, Japan.,Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan.,Laboratory of Veterinary Microbiology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Muller H, Loiseau V, Guillier S, Cordaux R, Gilbert C. Assessing the Impact of a Viral Infection on the Expression of Transposable Elements in the Cabbage Looper Moth (Trichoplusia ni). Genome Biol Evol 2021; 13:evab231. [PMID: 34613390 PMCID: PMC8634313 DOI: 10.1093/gbe/evab231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Most studies of stress-induced transposable element (TE) expression have so far focused on abiotic sources of stress. Here, we analyzed the impact of an infection by the AcMNPV baculovirus on TE expression in a cell line (Tnms42) and midgut tissues of the cabbage looper moth (Trichoplusia ni). We find that a large fraction of TE families (576/636 in Tnms42 cells and 503/612 in midgut) is lowly expressed or not expressed at all [≤ 4 transcripts per million (TPM)] in the uninfected condition (median TPM of 0.37 in Tnms42 and 0.46 in midgut cells). In the infected condition, a total of 62 and 187 TE families were differentially expressed (DE) in midgut and Tnms42 cells, respectively, with more up- (46) than downregulated (16) TE families in the former and as many up- (91) as downregulated (96) TE families in the latter. Expression log2 fold changes of DE TE families varied from -4.95 to 9.11 in Tnms42 cells and from -4.28 to 7.66 in midgut. Large variations in expression profiles of DE TEs were observed depending on the type of cells and on time after infection. Overall, the impact of AcMNPV on TE expression in T. ni is moderate but potentially sufficient to affect TE activity and genome architecture. Interestingly, one host-derived TE integrated into AcMNPV genomes is highly expressed in infected Tnms42 cells. This result shows that virus-borne TEs can be expressed, further suggesting that they may be able to transpose and that viruses may act as vectors of horizontal transfer of TEs in insects.
Collapse
Affiliation(s)
- Héloïse Muller
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Vincent Loiseau
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Sandra Guillier
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Universite de Poitiers, CNRS, France
| | - Clément Gilbert
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| |
Collapse
|
38
|
Dechaud C, Miyake S, Martinez-Bengochea A, Schartl M, Volff JN, Naville M. Clustering of Sex-Biased Genes and Transposable Elements in the Genome of the Medaka Fish Oryzias latipes. Genome Biol Evol 2021; 13:6384576. [PMID: 34623422 PMCID: PMC8633743 DOI: 10.1093/gbe/evab230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Although genes with similar expression patterns are sometimes found in the same genomic regions, almost nothing is known about the relative organization in genomes of genes and transposable elements (TEs), which might influence each other at the regulatory level. In this study, we used transcriptomic data from male and female gonads of the Japanese medaka Oryzias latipes to define sexually biased genes and TEs and analyze their relative genomic localization. We identified 20,588 genes expressed in the adult gonads of O. latipes. Around 39% of these genes are differentially expressed between male and female gonads. We further analyzed the expression of TEs using the program SQuIRE and showed that more TE copies are overexpressed in testis than in ovaries (36% vs. 10%, respectively). We then developed a method to detect genomic regions enriched in testis- or ovary-biased genes. This revealed that sex-biased genes and TEs are not randomly distributed in the genome and a part of them form clusters with the same expression bias. We also found a correlation of expression between TE copies and their closest genes, which increases with decreasing intervening distance. Such a genomic organization suggests either that TEs hijack the regulatory sequences of neighboring sexual genes, allowing their expression in germ line cells and consequently new insertions to be transmitted to the next generation, or that TEs are involved in the regulation of sexual genes, and might therefore through their mobility participate in the rewiring of sex regulatory networks.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Sho Miyake
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | | | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany.,Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
39
|
Marston JL, Greenig M, Singh M, Bendall ML, Duarte RR, Feschotte C, Iñiguez LP, Nixon DF. SARS-CoV-2 infection mediates differential expression of human endogenous retroviruses and long interspersed nuclear elements. JCI Insight 2021; 6:147170. [PMID: 34731091 PMCID: PMC8783694 DOI: 10.1172/jci.insight.147170] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 promotes an imbalanced host response that underlies the development and severity of COVID-19. Infections with viruses are known to modulate transposable elements (TEs), which can exert downstream effects by modulating host gene expression, innate immune sensing, or activities encoded by their protein products. We investigated the impact of SARS-CoV-2 infection on TE expression using RNA-Seq data from cell lines and from primary patient samples. Using a bioinformatics tool, Telescope, we showed that SARS-CoV-2 infection led to upregulation or downregulation of TE transcripts, a subset of which differed from cells infected with SARS, Middle East respiratory syndrome coronavirus (MERS-CoV or MERS), influenza A virus (IAV), respiratory syncytial virus (RSV), and human parainfluenza virus type 3 (HPIV3). Differential expression of key retroelements specifically identified distinct virus families, such as Coronaviridae, with unique retroelement expression subdividing viral species. Analysis of ChIP-Seq data showed that TEs differentially expressed in SARS-CoV-2 infection were enriched for binding sites for transcription factors involved in immune responses and for pioneer transcription factors. In samples from patients with COVID-19, there was significant TE overexpression in bronchoalveolar lavage fluid and downregulation in PBMCs. Thus, although the host gene transcriptome is altered by infection with SARS-CoV-2, the retrotranscriptome may contain the most distinctive features of the cellular response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jez L Marston
- Division of Infectious Diseases, Weill Cornell College of Medicine, New York, United States of America
| | - Matthew Greenig
- Division of Infectious Diseases, Weill Cornell College of Medicine, New York, United States of America
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States of America
| | - Matthew L Bendall
- Division of Infectious Diseases, Weill Cornell College of Medicine, New York, United States of America
| | - Rodrigo Rr Duarte
- Division of Infectious Diseases, Weill Cornell College of Medicine, New York, United States of America
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States of America
| | - Luis P Iñiguez
- Division of Infectious Diseases, Weill Cornell College of Medicine, New York, United States of America
| | - Douglas F Nixon
- Division of Infectious Diseases, Weill Cornell College of Medicine, New York, United States of America
| |
Collapse
|
40
|
Lizamore D, Bicknell R, Winefield C. Elevated transcription of transposable elements is accompanied by het-siRNA-driven de novo DNA methylation in grapevine embryogenic callus. BMC Genomics 2021; 22:676. [PMID: 34544372 PMCID: PMC8454084 DOI: 10.1186/s12864-021-07973-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Somatic variation is a valuable source of trait diversity in clonally propagated crops. In grapevine, which has been clonally propagated worldwide for centuries, important phenotypes such as white berry colour are the result of genetic changes caused by transposable elements. Additionally, epiallele formation may play a role in determining geo-specific (‘terroir’) differences in grapes and thus ultimately in wine. This genomic plasticity might be co-opted for crop improvement via somatic embryogenesis, but that depends on a species-specific understanding of the epigenetic regulation of transposable element (TE) expression and silencing in these cultures. For this reason, we used whole-genome bisulphite sequencing, mRNA sequencing and small RNA sequencing to study the epigenetic status and expression of TEs in embryogenic callus, in comparison with leaf tissue. Results We found that compared with leaf tissue, grapevine embryogenic callus cultures accumulate relatively high genome-wide CHH methylation, particularly across heterochromatic regions. This de novo methylation is associated with an abundance of transcripts from highly replicated TE families, as well as corresponding 24 nt heterochromatic siRNAs. Methylation in the TE-specific CHG context was relatively low over TEs located within genes, and the expression of TE loci within genes was highly correlated with the expression of those genes. Conclusions This multi-‘omics analysis of grapevine embryogenic callus in comparison with leaf tissues reveals a high level of genome-wide transcription of TEs accompanied by RNA-dependent DNA methylation of these sequences in trans. This provides insight into the genomic conditions underlying somaclonal variation and epiallele formation in plants regenerated from embryogenic cultures, which is an important consideration when using these tissues for plant propagation and genetic improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07973-9.
Collapse
Affiliation(s)
| | - Ross Bicknell
- Plant and Food Research Ltd, Lincoln, Canterbury, New Zealand
| | - Chris Winefield
- Department Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand.
| |
Collapse
|
41
|
Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis. Commun Biol 2021; 4:590. [PMID: 34002013 PMCID: PMC8128904 DOI: 10.1038/s42003-021-02095-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/05/2021] [Indexed: 02/03/2023] Open
Abstract
The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host-pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.
Collapse
|
42
|
Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proc Natl Acad Sci U S A 2021; 118:2105968118. [PMID: 33958444 PMCID: PMC8166107 DOI: 10.1073/pnas.2105968118] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An unresolved issue of SARS-CoV-2 disease is that patients often remain positive for viral RNA as detected by PCR many weeks after the initial infection in the absence of evidence for viral replication. We show here that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of the infected cell and be expressed as chimeric transcripts fusing viral with cellular sequences. Importantly, such chimeric transcripts are detected in patient-derived tissues. Our data suggest that, in some patient tissues, the majority of all viral transcripts are derived from integrated sequences. Our data provide an insight into the consequence of SARS-CoV-2 infections that may help to explain why patients can continue to produce viral RNA after recovery. Prolonged detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and recurrence of PCR-positive tests have been widely reported in patients after recovery from COVID-19, but some of these patients do not appear to shed infectious virus. We investigated the possibility that SARS-CoV-2 RNAs can be reverse-transcribed and integrated into the DNA of human cells in culture and that transcription of the integrated sequences might account for some of the positive PCR tests seen in patients. In support of this hypothesis, we found that DNA copies of SARS-CoV-2 sequences can be integrated into the genome of infected human cells. We found target site duplications flanking the viral sequences and consensus LINE1 endonuclease recognition sequences at the integration sites, consistent with a LINE1 retrotransposon-mediated, target-primed reverse transcription and retroposition mechanism. We also found, in some patient-derived tissues, evidence suggesting that a large fraction of the viral sequences is transcribed from integrated DNA copies of viral sequences, generating viral–host chimeric transcripts. The integration and transcription of viral sequences may thus contribute to the detection of viral RNA by PCR in patients after infection and clinical recovery. Because we have detected only subgenomic sequences derived mainly from the 3′ end of the viral genome integrated into the DNA of the host cell, infectious virus cannot be produced from the integrated subgenomic SARS-CoV-2 sequences.
Collapse
|
43
|
Gazquez-Gutierrez A, Witteveldt J, R Heras S, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA (NEW YORK, N.Y.) 2021; 27:rna.078721.121. [PMID: 33888553 PMCID: PMC8208052 DOI: 10.1261/rna.078721.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/17/2021] [Indexed: 05/15/2023]
Abstract
Around half of the genome in mammals is composed of transposable elements (TEs) such as DNA transposons and retrotransposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mutagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings, beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can misidentify TEs as invading viruses and trigger the major antiviral innate immune pathway, the type I interferon (IFN) response. This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, including cancer and senescence. Importantly, TEs may also play a causative role in the development of complex autoimmune diseases characterised by constitutive type I IFN activation. All these observations suggest the presence of strong but opposing forces driving the coevolution of TEs and antiviral defence. A better biological understanding of the TE replicative cycle as well as of the antiviral nucleic acid sensing mechanisms will provide insights into how these two biological processes interact and will help to design better strategies to treat human diseases characterised by aberrant TE expression and/or type I IFN activation.
Collapse
Affiliation(s)
| | - Jeroen Witteveldt
- University of Edinburgh - Institute of Immunology and Infection Research
| | - Sara R Heras
- GENYO. Centre for Genomics and Oncological Research, Pfizer University of Granada
| | - Sara Macias
- Institute of Immunology and Infection Research
| |
Collapse
|
44
|
Fay EJ, Aron SL, Macchietto MG, Markman MW, Esser-Nobis K, Gale M, Shen S, Langlois RA. Cell type- and replication stage-specific influenza virus responses in vivo. PLoS Pathog 2020; 16:e1008760. [PMID: 32790753 PMCID: PMC7447048 DOI: 10.1371/journal.ppat.1008760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/25/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses (IAVs) remain a significant global health burden. Activation of the innate immune response is important for controlling early virus replication and spread. It is unclear how early IAV replication events contribute to immune detection. Additionally, while many cell types in the lung can be infected, it is not known if all cell types contribute equally to establish the antiviral state in the host. Here, we use single-cycle influenza A viruses (scIAVs) to characterize the early immune response to IAV in vitro and in vivo. We found that the magnitude of virus replication contributes to antiviral gene expression within infected cells prior to the induction of a global response. We also developed a scIAV that is only capable of undergoing primary transcription, the earliest stage of virus replication. Using this tool, we uncovered replication stage-specific responses in vitro and in vivo. Using several innate immune receptor knockout cell lines, we identify RIG-I as the predominant antiviral detector of primary virus transcription and amplified replication in vitro. Through a Cre-inducible reporter mouse, we used scIAVs expressing Cre-recombinase to characterize cell type-specific responses in vivo. Individual cell types upregulate unique sets of antiviral genes in response to both primary virus transcription and amplified replication. We also identified antiviral genes that are only upregulated in response to direct infection. Altogether, these data offer insight into the early mechanisms of antiviral gene activation during influenza A infection.
Collapse
Affiliation(s)
- Elizabeth J. Fay
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis MN, United States of America
- Center for Immunology, University of Minnesota, Minneapolis MN, United States of America
| | - Stephanie L. Aron
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN, United States of America
| | - Marissa G. Macchietto
- Institute for Health Informatics, University of Minnesota, Minneapolis MN, United States of America
| | - Matthew W. Markman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN, United States of America
| | - Katharina Esser-Nobis
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, Seattle WA, United States of America
| | - Michael Gale
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, Seattle WA, United States of America
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis MN, United States of America
| | - Ryan A. Langlois
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis MN, United States of America
- Center for Immunology, University of Minnesota, Minneapolis MN, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN, United States of America
| |
Collapse
|