1
|
Brunner G, Gajwani R, Gross J, Gumley A, Timmerman RH, Taylor R, Krishnadas R, Lawrie SM, Schwannauer M, Schultze-Lutter F, Uhlhaas PJ, Fracasso A. Choroid plexus morphology in schizophrenia and early-stage psychosis: A cross-sectional study. Schizophr Res 2025; 275:107-114. [PMID: 39693679 DOI: 10.1016/j.schres.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The choroid plexus is an important structure within the ventricular system. Schizophrenia has been associated with morphological changes to the choroid plexus but the presence and extent of alterations at different illness stages is unclear. METHODS We examined choroid plexus volumes in participants at clinical high-risk for psychosis (N = 110), participants with first-episode psychosis (N = 37), participants with schizophrenia (N = 28), clinical (N = 38) and non-clinical controls (N = 75). Automated segmentation (Gaussian mixture model) was used to estimate choroid plexus volumes from T1 magnetic resonance (MR) images. We then conducted a linear model and Bayes factor analysis to investigate group differences. In addition, the relationship between choroid plexus volumes and clinical characteristics was assessed. RESULTS Schizophrenia patients were characterized by increased choroid plexus and ventricular volume while first-episode psychosis and clinical high-risk for psychosis participants showed no differences in choroid plexus volumes. However, choroid plexus volumes in schizophrenia patients did not significantly differ from controls when controlling for ventricular volume. Finally, choroid plexus volumes were not associated with clinical characteristics in the clinical high-risk group. CONCLUSION Our findings suggest that morphological alterations are not specific to the choroid plexus in schizophrenia and early-stage psychosis. Previously reported choroid plexus abnormalities in schizophrenia patients could be explained by changes in ventricular volume.
Collapse
Affiliation(s)
- Gina Brunner
- School of Psychology and Neuroscience, Univ. of Glasgow, UK
| | | | - Joachim Gross
- Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Andrew Gumley
- Institute of Health and Wellbeing, Univ. of Glasgow, UK
| | | | - Rebecca Taylor
- School of Psychology and Neuroscience, Univ. of Glasgow, UK
| | | | | | | | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany; Department of Psychology, Faculty of Psychology, Airlangga University, Airlangga, Indonesia; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.
| | | |
Collapse
|
2
|
Nasr El-Din WA, Abdel Fattah IO. L-arginine mitigates choroid plexus changes in Alzheimer's disease rat model via oxidative/inflammatory burden and behavioral modulation. Tissue Cell 2024; 91:102572. [PMID: 39326233 DOI: 10.1016/j.tice.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Aging is a risk factor for Alzheimer's disease (AD), leading to choroid plexus (CP) alterations. This study aimed to explore the possible therapeutic mechanisms of ARG on AD-induced CP changes. Sprague-Dawley rats were divided into 6 groups (n = 7 per group): adult, adult+ARG, aged, aged+ARG, aged+AD, and aged+AD+ARG groups. Evaluations were for Y-maze test, serum levels of oxidative/inflammatory markers, and serum and cerebrospinal fluid (CSF) markers of AD, histopathology, immunohistochemistry, and histomorphometry. The aged+AD group demonstrated a significant decline in maze test parameters, total antioxidant capacity (TAC), brain-derived neurotrophic factor (BDNF) levels, and vascular endothelial growth factor (VEGF) immunoexpression, while tumour necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), beta-amyloid (Aβ) levels and amyloid protein precursor (APP), and heat shock protein90 (HSP90) immunoexpressions were significantly increased. Sections of this group showed flat epitheliocytes, congested capillaries, connective tissue expansion, and degenerated endothelium. These parameters were modulated by ARG administration, via increased levels of TAC (1.37 vs 2.17 mmol/L), (p = 0.018) BDNF (serum: 48.50 vs 78.41; CSF: 4.07 vs 7.11 pg/ml) (p< 0.001), and VEGF (0.07 vs 0.26 OD) (p< 0.001), in addition to decreased levels of TNF-α (86.63 vs 41.39 pg/ml) (p< 0.001), IL-1β (96.04 vs 39.57 pg/ml) (p< 0.001), Aβ (serum: 67.40 vs 47.30; CSF: 189.26 vs 169.84 pg/ml) (p< 0.001), and HSP90 (0.54 vs 0.13 OD) (p< 0.001). In conclusion, ARG ameliorates the AD-associated CP changes, including histopathological, oxidative/inflammatory, and AD markers, and VEGF and HSP90 immunohistochemical alterations. Dietary ARG consumption is recommended to avoid AD progression in the elderly.
Collapse
Affiliation(s)
- Wael Amin Nasr El-Din
- Department of Anatomy, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain; Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Islam Omar Abdel Fattah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
3
|
Islam M, Samal A, Davis DJ, Behura SK. Ablation of placental REST deregulates fetal brain metabolism and impacts gene expression of the offspring brain at the postnatal and adult stages. FASEB J 2024; 38:e23349. [PMID: 38069914 DOI: 10.1096/fj.202301344r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
In this study, the transcriptional repressor REST (Repressor Element 1 Silencing Transcription factor) was ablated in the mouse placenta to investigate molecular and cellular impacts on the offspring brain at different life stages. Ablation of placental REST deregulated several brain metabolites, including glucose and lactate that fuel brain energy, vitamin C (ascorbic acid) that functions in the epigenetic programming of the brain during postnatal development, and glutamate and creatine that help the brain to respond to stress conditions during adult life. Bulk RNA-seq analysis showed that a lack of placental REST persistently altered multiple transport genes, including those related to oxygen transportation in the offspring brain. While metabolic genes were impacted in the postnatal brain, different stress response genes were activated in the adult brain. DNA methylation was also impacted in the adult brain due to the loss of placental REST, but in a sex-biased manner. Single-nuclei RNA-seq analysis showed that specific cell types of the brain, particularly those of the choroid plexus and ependyma, which play critical roles in producing cerebrospinal fluid and maintaining metabolic homeostasis, were significantly impacted due to the loss of placental REST. These cells showed significant differential expression of genes associated with the metabotropic (G coupled protein) and ionotropic (ligand-gated ion channel) glutamate receptors, suggesting an impact of ablation of placental REST on the glutamatergic signaling of the offspring brain. The study expands our understanding of placental influences on the offspring brain.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ananya Samal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Interdisciplnary Reproductive and Health Group, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
Mazucanti CH, Kennedy V, Premathilake HU, Doyle ME, Tian J, Liu QR, O'Connell J, Camandola S, Egan JM. AAV5-mediated manipulation of insulin expression in choroid plexus has long-term metabolic and behavioral consequences. Cell Rep 2023; 42:112903. [PMID: 37515772 PMCID: PMC10529429 DOI: 10.1016/j.celrep.2023.112903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/06/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
The choroid plexus (CP) is a source of trophic factors for the developing and mature brain. Insulin is produced in epithelial cells of the CP (EChPs), and its secretion is stimulated by Htr2c-mediated signaling. We modulated insulin expression in EChPs with intracerebroventricular injections of AAV5. Insulin overexpression in CP decelerates food intake, whereas its knockdown has the opposite effect. Insulin overexpression also results in reduced anxious behavior. Transcriptomic changes in the hypothalamus, especially in synapse-related processes, are also seen in mice overexpressing insulin in CP. Last, activation of Gq signaling in CP leads to acute Akt phosphorylation in neurons of the arcuate nucleus, indicating a direct action of CP-derived insulin on the hypothalamus. Taken together, our findings signify that CP is a relevant source of insulin in the central nervous system and that CP-derived insulin should be taken into consideration in future work pertaining to insulin actions in the brain.
Collapse
Affiliation(s)
- Caio Henrique Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Vernon Kennedy
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Hasitha U Premathilake
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Maire E Doyle
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Jane Tian
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Jennifer O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Simonetta Camandola
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
5
|
Karakatsani A, Álvarez-Vergara MI, de Almodóvar CR. The vasculature of neurogenic niches: Properties and function. Cells Dev 2023; 174:203841. [PMID: 37060947 DOI: 10.1016/j.cdev.2023.203841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
In the adult rodent brain, neural stem cells (NSCs) reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. In these areas, NSCs and their progeny integrate intrinsic signals and extrinsic cues provided by their microenvironment that control their behavior. The vasculature in the SVZ and SGZ, and the choroid plexus (ChP) in the SVZ, have emerged as critical compartments of the neurogenic niches as they provide a rich repertoire of cues to regulate NSC quiescence, proliferation, self-renewal and differentiation. Physical contact between NSCs and blood vessels is also a feature within the niches and supports different processes such as quiescence, migration and vesicle transport. In this review, we provide a description of the brain and choroid plexus vasculature in both stem cell niches, highlighting the main properties and role of the vasculature in each niche. We also summarize the current understanding of how blood vessel- and ChP-derived signals influence the behavior of NSCs in physiological adulthood, as well as upon aging.
Collapse
Affiliation(s)
- Andromachi Karakatsani
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - María I Álvarez-Vergara
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany; Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
6
|
Zuba V, Furon J, Bellemain-Sagnard M, Martinez de Lazarrondo S, Lebouvier L, Rubio M, Hommet Y, Gauberti M, Vivien D, Ali C. The choroid plexus: a door between the blood and the brain for tissue-type plasminogen activator. Fluids Barriers CNS 2022; 19:80. [PMID: 36243724 PMCID: PMC9569045 DOI: 10.1186/s12987-022-00378-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background In the vascular compartment, the serine protease tissue-type plasminogen activator (tPA) promotes fibrinolysis, justifying its clinical use against vasculo-occlusive diseases. Accumulating evidence shows that circulating tPA (endogenous or exogenous) also controls brain physiopathological processes, like cerebrovascular reactivity, blood–brain barrier (BBB) homeostasis, inflammation and neuronal fate. Whether this occurs by direct actions on parenchymal cells and/or indirectly via barriers between the blood and the central nervous system (CNS) remains unclear. Here, we postulated that vascular tPA can reach the brain parenchyma via the blood-cerebrospinal fluid barrier (BCSFB), that relies on choroid plexus (CP) epithelial cells (CPECs). Methods We produced various reporter fusion proteins to track tPA in primary cultures of CPECs, in CP explants and in vivo in mice. We also investigated the mechanisms underlying tPA transport across the BCSFB, with pharmacological and molecular approaches. Results We first demonstrated that tPA can be internalized by CPECs in primary cultures and in ex vivo CPs explants. In vivo, tPA can also be internalized by CPECs both at their basal and apical sides. After intra-vascular administration, tPA can reach the cerebral spinal fluid (CSF) and the brain parenchyma. Further investigation allowed discovering that the transcytosis of tPA is mediated by Low-density-Lipoprotein Related Protein-1 (LRP1) expressed at the surface of CPECs and depends on the finger domain of tPA. Interestingly, albumin, which has a size comparable to that of tPA, does not normally cross the CPs, but switches to a transportable form when grafted to the finger domain of tPA. Conclusions These findings provide new insights on how vascular tPA can reach the brain parenchyma, and open therapeutic avenues for CNS disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00378-0.
Collapse
Affiliation(s)
- Vincent Zuba
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Jonathane Furon
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Mathys Bellemain-Sagnard
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Sara Martinez de Lazarrondo
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Laurent Lebouvier
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Marina Rubio
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Yannick Hommet
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Maxime Gauberti
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France.,Department of Clinical Research, Caen-Normandie Hospital (CHU), Caen, France
| | - Carine Ali
- Physiopathology and Imaging of Neurological Disorders, Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Boulevard Becquerel, 14074, Caen, France.
| |
Collapse
|
7
|
Bitanihirwe BKY, Lizano P, Woo TUW. Deconstructing the functional neuroanatomy of the choroid plexus: an ontogenetic perspective for studying neurodevelopmental and neuropsychiatric disorders. Mol Psychiatry 2022; 27:3573-3582. [PMID: 35618887 PMCID: PMC9133821 DOI: 10.1038/s41380-022-01623-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
The choroid plexus (CP) is a delicate and highly vascularized structure in the brain comprised of a dense network of fenestrated capillary loops that help in the synthesis, secretion and circulation of cerebrospinal fluid (CSF). This unique neuroanatomical structure is comprised of arachnoid villi stemming from frond-like surface projections-that protrude into the lumen of the four cerebral ventricles-providing a key source of nutrients to the brain parenchyma in addition to serving as a 'sink' for central nervous system metabolic waste. In fact, the functions of the CP are often described as being analogous to those of the liver and kidney. Beyond forming a barrier/interface between the blood and CSF compartments, the CP has been identified as a modulator of leukocyte trafficking, inflammation, cognition, circadian rhythm and the gut brain-axis. In recent years, advances in molecular biology techniques and neuroimaging along with the use of sophisticated animal models have played an integral role in shaping our understanding of how the CP-CSF system changes in relation to the maturation of neural circuits during critical periods of brain development. In this article we provide an ontogenetic perspective of the CP and review the experimental evidence implicating this structure in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Humanitarian and Conflict Response Institute, University of Manchester, Manchester, UK.
| | - Paulo Lizano
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Translational Neuroscience Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tsung-Ung W Woo
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Program in Molecular Neuropathology, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
8
|
Jang A, Lehtinen MK. Experimental approaches for manipulating choroid plexus epithelial cells. Fluids Barriers CNS 2022; 19:36. [PMID: 35619113 PMCID: PMC9134666 DOI: 10.1186/s12987-022-00330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus (ChP) epithelial cells are crucial for the function of the blood-cerebrospinal fluid barrier (BCSFB) in the developing and mature brain. The ChP is considered the primary source and regulator of CSF, secreting many important factors that nourish the brain. It also performs CSF clearance functions including removing Amyloid beta and potassium. As such, the ChP is a promising target for gene and drug therapy for neurodevelopmental and neurological disorders in the central nervous system (CNS). This review describes the current successful and emerging experimental approaches for targeting ChP epithelial cells. We highlight methodological strategies to specifically target these cells for gain or loss of function in vivo. We cover both genetic models and viral gene delivery systems. Additionally, several lines of reporters to access the ChP epithelia are reviewed. Finally, we discuss exciting new approaches, such as chemical activation and transplantation of engineered ChP epithelial cells. We elaborate on fundamental functions of the ChP in secretion and clearance and outline experimental approaches paving the way to clinical applications.
Collapse
Affiliation(s)
- Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Kompaníková P, Bryja V. Regulation of choroid plexus development and its functions. Cell Mol Life Sci 2022; 79:304. [PMID: 35589983 PMCID: PMC9119385 DOI: 10.1007/s00018-022-04314-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.
Collapse
Affiliation(s)
- Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265, Brno, Czech Republic.
| |
Collapse
|