1
|
Ye P, Zhang W, Liao Y, Hu T, Jiang CL. Unlocking the brain's code: The crucial role of post-translational modifications in neurodevelopment and neurological function. Phys Life Rev 2025; 53:187-214. [PMID: 40120399 DOI: 10.1016/j.plrev.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Post-translational modifications (PTMs) represent a crucial regulatory mechanism in the brain, influencing various processes, including neurodevelopment and neurological function. This review discusses the effects of PTMs, such as phosphorylation, ubiquitination, acetylation, and glycosylation, on neurodevelopment and central nervous system functionality. Although neurodevelopmental processes linked to PTMs are complex, proteins frequently converge within shared pathways. These pathways encompass neurodevelopmental processes, signaling mechanisms, neuronal migration, and synaptic connection formation, where PTMs act as dynamic regulators, ensuring the precise execution of brain functions. A detailed investigation of the fundamental mechanisms governing these pathways will contribute to a deeper understanding of nervous system functions and facilitate the identification of potential therapeutic targets. A thorough examination of the PTM landscape holds significant potential, not only in advancing knowledge but also in developing treatments for various neurological disorders.
Collapse
Affiliation(s)
- Peng Ye
- Department of Ear-Nose-Throat, Eastern Theater Naval Hospital, No. 98, Wen Hua Road, ZheJiang 316000, China.
| | - Wangzheqi Zhang
- School of Anesthesiology, Changhai Hospital, Naval Medical University, No. 168, Changhai Road, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Yan Liao
- School of Anesthesiology, Changhai Hospital, Naval Medical University, No. 168, Changhai Road, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, No. 800, Xiangyin Road, Shanghai 200433, China.
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, No. 800, Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
2
|
Vangala VNP, Uversky VN. Intrinsic disorder in protein interaction networks linking cancer with metabolic diseases. Comput Biol Chem 2025; 118:108493. [PMID: 40319601 DOI: 10.1016/j.compbiolchem.2025.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Complex diseases are usually driven by numerous proteins that operate as intricate network systems. Deciphering of their signals is required for more advanced level understanding of the cellular processes driven by protein interactions. Therefore, placing diseases into a framework, where they can be viewed together, represents an important and fruitful approach. The goal of this study was to assess the intrinsic disorder present in the proteins forming PPI networks linking cancer with different human diseases. To this end, we used a set of bioinformatics tools to explore intrinsic disorder and liquid-liquid phase separation predispositions of 340 proteins reported earlier by Hirsch et al. (Cancer Cell (2010) 17(4), 348-361; doi: 10.1016/j.ccr.2010.01.022) as differently expressed in common chronic diseases, such as cancer, obesity, diabetes, and cardiovascular diseases. We further examined selected proteins from this set for their interactability and intrinsic disorder-based functionality. Our analyses demonstrated that intrinsically disordered proteins and proteins with intrinsically disordered regions may act as active network promoters and operate as highly connected hubs, which further enables them to play key roles in the disease pathways. The study also indicated that differently expressed proteins involved in disease progression could be characterized by diverse degrees of intrinsic disorder and LLPS propensity. We hope that our findings in combination with the outputs of the proteomic and functional genomic analyses contain essential clues that can be used in further medical research leading to the design of better therapies.
Collapse
Affiliation(s)
- Veda Naga Priya Vangala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Chitu V, Biundo F, Oppong-Asare J, Gökhan Ş, Aguilan JT, Dulski J, Wszolek ZK, Sidoli S, Stanley ER. Prophylactic effect of chronic immunosuppression in a mouse model of CSF-1 receptor-related leukoencephalopathy. Glia 2023; 71:2664-2678. [PMID: 37519044 PMCID: PMC10529087 DOI: 10.1002/glia.24446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Mutations leading to colony-stimulating factor-1 receptor (CSF-1R) loss-of-function or haploinsufficiency cause CSF1R-related leukoencephalopathy (CRL), an adult-onset disease characterized by loss of myelin and neurodegeneration, for which there is no effective therapy. Symptom onset usually occurs in the fourth decade of life and the penetrance of disease in carriers is high. However, familial studies have identified a few carriers of pathogenic CSF1R mutations that remain asymptomatic even in their seventh decade of life, raising the possibility that the development and severity of disease might be influenced by environmental factors. Here we report new cases in which long-term glucocorticoid treatment is associated with asymptomatic status in elder carriers of pathogenic CSF-1R mutations. The main objective of the present study was to investigate the link between chronic immunosuppression initiated pre-symptomatically and resistance to the development of symptomatic CRL, in the Csf1r+/- mouse model. We show that chronic prednisone administration prevents the development of memory, motor coordination and social interaction deficits, as well as the demyelination, neurodegeneration and microgliosis associated with these deficits. These findings are in agreement with the preliminary clinical observations and support the concept that pre-symptomatic immunosuppression is protective in patients carrying pathogenic CSF1R variants associated with CRL. Proteomic analysis of microglia and oligodendrocytes indicates that prednisone suppresses processes involved in microglial activation and alleviates senescence and improves fitness of oligodendrocytes. This analysis also identifies new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jude Oppong-Asare
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Jennifer T. Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaroslaw Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | | | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Hu Y, Liu C, Han W, Wang P. A theoretical framework of immune cell phenotypic classification and discovery. Front Immunol 2023; 14:1128423. [PMID: 36936975 PMCID: PMC10018129 DOI: 10.3389/fimmu.2023.1128423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Immune cells are highly heterogeneous and show diverse phenotypes, but the underlying mechanism remains to be elucidated. In this study, we proposed a theoretical framework for immune cell phenotypic classification based on gene plasticity, which herein refers to expressional change or variability in response to conditions. The system contains two core points. One is that the functional subsets of immune cells can be further divided into subdivisions based on their highly plastic genes, and the other is that loss of phenotype accompanies gain of phenotype during phenotypic conversion. The first point suggests phenotypic stratification or layerability according to gene plasticity, while the second point reveals expressional compatibility and mutual exclusion during the change in gene plasticity states. Abundant transcriptome data analysis in this study from both microarray and RNA sequencing in human CD4 and CD8 single-positive T cells, B cells, natural killer cells and monocytes supports the logical rationality and generality, as well as expansibility, across immune cells. A collection of thousands of known immunophenotypes reported in the literature further supports that highly plastic genes play an important role in maintaining immune cell phenotypes and reveals that the current classification model is compatible with the traditionally defined functional subsets. The system provides a new perspective to understand the characteristics of dynamic, diversified immune cell phenotypes and intrinsic regulation in the immune system. Moreover, the current substantial results based on plasticitomics analysis of bulk and single-cell sequencing data provide a useful resource for big-data-driven experimental studies and knowledge discoveries.
Collapse
Affiliation(s)
- Yuzhe Hu
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Wenling Han
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
- *Correspondence: Pingzhang Wang,
| |
Collapse
|
5
|
Liu Y, Guo YF, Peng H, Zhou HY, Su T, Yang M, Guo Q, Ye X, Huang Y, Jiang TJ. Hypothalamic Hnscr regulates glucose balance by mediating central inflammation and insulin signal. Cell Prolif 2023; 56:e13332. [PMID: 36042571 DOI: 10.1111/cpr.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Hypothalamic dysfunction leads to glucose metabolic imbalance; however, the mechanisms still need clarification. Our current study was to explore the role of hypothalamic Hnscr in glucose metabolism. MATERIALS AND METHODS Using Hnscr knockout or htNSC-specific Hnscr overexpression mice, we evaluated the effects of Hnscr on glucose metabolism through GTTs, ITTs, serum indicator measurements, etc. Immunofluorescence staining and Western blotting were performed to test inflammation levels and insulin signalling in hypothalamus. Conditioned medium intervene were used to investigate the effects of htNSCs on neuronal cell line. We also detected the glucose metabolism of mice with htNSCs implantation. RESULTS Hnscr expression decreased in the hypothalamus after high-fat diet feed. Hnscr-null mice displayed aggravated systematic insulin resistance, while mice with htNSC-specific Hnscr overexpression had the opposite phenotype. Notably, Hnscr-null mice had increased NF-κB signal in htNSCs, along with enhanced inflammation and damaged insulin signal in neurons located in arcuate nucleus of hypothalamus. The secretions, including sEVs, of Hnscr-deficient htNSCs mediated the detrimental effects on the CNS cell line. Locally implantation with Hnscr-depleted htNSCs disrupted glucose homeostasis. CONCLUSIONS This study demonstrated that decreased Hnscr in htNSCs led to systematic glucose imbalance through activating NF-κB signal and dampening insulin signal in hypothalamic neurons.
Collapse
Affiliation(s)
- Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiao Ye
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Zhang D, Cai D. Young cerebrospinal fluid contains key rejuvenating factors. LIFE METABOLISM 2022; 1:103-104. [PMID: 39872356 PMCID: PMC11749764 DOI: 10.1093/lifemeta/loac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 01/30/2025]
Affiliation(s)
- Dongming Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
7
|
Abstract
Zn2+ ions are essential in many physiological processes, including enzyme catalysis, protein structural stabilization, and the regulation of many proteins. The affinities of proteins for Zn2+ ions span several orders of magnitude, with catalytic Zn2+ ions generally held more tightly than structural or regulatory ones. Metal carrier proteins, most of which are not specific for Zn2+, bind these ions with a broad range of affinities that overlap those of catalytic, structural, and regulatory Zn2+ ions and are thought to be responsible for distributing the metal through most cells, tissues, and fluid compartments. While little is known about how many proteins obtain or release these ions, there is now considerable experimental evidence suggesting that metal carrier proteins may be responsible for transferring metals to and from some Zn2+-dependent proteins, thus serving as a major regulatory factor for them. In this review, the biological roles of Zn2+ and structures of Zn2+ binding sites are examined, and experimental evidence demonstrating the direct participation of metal carrier proteins in enzyme regulation is discussed. Mechanisms of metal ion transfer are also offered, and the potential physiological significance of this phenomenon is explored.
Collapse
|
8
|
Ikhlas S, Usman A, Kim D, Cai D. Exosomes/microvesicles target SARS-CoV-2 via innate and RNA-induced immunity with PIWI-piRNA system. Life Sci Alliance 2021; 5:5/3/e202101240. [PMID: 34862272 PMCID: PMC8645330 DOI: 10.26508/lsa.202101240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Murine neural stem cell exosomes/microvesicles can work to reduce SARS-CoV-2, an effect that can be adaptively enhanced via viral RNA fragment stimulation, which requires the PIWI-piRNA system. Murine neural stem cells (NSCs) were recently shown to release piRNA-containing exosomes/microvesicles (Ex/Mv) for exerting antiviral immunity, but it remains unknown if these Ex/Mv could target SARS-CoV-2 and whether the PIWI-piRNA system is important for these antiviral actions. Here, using in vitro infection models, we show that hypothalamic NSCs (htNSCs) Ex/Mv provided an innate immunity protection against SARS-CoV-2. Importantly, enhanced antiviral actions were achieved by using induced Ex/Mv that were derived from induced htNSCs through twice being exposed to several RNA fragments of SARS-CoV-2 genome, a process that was designed not to involve protein translation of these RNA fragments. The increased antiviral effects of these induced Ex/Mv were associated with increased expression of piRNA species some of which could predictably target SARS-CoV-2 genome. Knockout of piRNA-interacting protein PIWIL2 in htNSCs led to reductions in both innate and induced antiviral effects of Ex/Mv in targeting SARS-CoV-2. Taken together, this study demonstrates a case suggesting Ex/Mv from certain cell types have innate and adaptive immunity against SARS-CoV-2, and the PIWI-piRNA system is important for these antiviral actions.
Collapse
Affiliation(s)
- Shoeb Ikhlas
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Afia Usman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Dongkyeong Kim
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, NY, USA .,Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, NY, USA
| |
Collapse
|
9
|
Wang Z, Wu W, Kim MS, Cai D. GnRH pulse frequency and irregularity play a role in male aging. NATURE AGING 2021; 1:904-918. [PMID: 37118330 DOI: 10.1038/s43587-021-00116-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/12/2021] [Indexed: 04/30/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) has a role in hypothalamic control of aging, but the underlying patterns and relationship with downstream reproductive hormones are still unclear. Here we report that hypothalamic GnRH pulse frequency and irregularity increase before GnRH pulse amplitude slowly decreases during aging. GnRH is inhibited by nuclear factor (NF)-κB, and GnRH pulses were controlled by oscillations in the transcriptional activity of NF-κB. Exposure to testosterone under pro-inflammatory conditions stimulated both NF-κB oscillations and GnRH pulses. While castration of middle-aged mice induced short-term anti-aging effects, preventing elevation of luteinizing hormone (LH) levels after castration led to long-term anti-aging effects and lifespan extension, indicating that high-frequency GnRH pulses and high-magnitude LH levels coordinately mediate aging. Reprogramming the endogenous GnRH pulses of middle-aged male mice via an optogenetic approach revealed that increasing GnRH pulses frequency causes LH excess and aging acceleration, while lowering the frequency of and stabilizing GnRH pulses can slow down aging. In conclusion, GnRH pulses are important for aging in male mice.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wenhe Wu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Soo Kim
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|