1
|
Kent O, Casey ER, Brown M, Bell S, Ehrman MC, Flagler MJ, Määttä A, Benham AM, Hawkins TJ. New imaging tools reveal live cellular collagen secretion, fibril dynamics and network organisation. Sci Rep 2025; 15:13764. [PMID: 40258849 PMCID: PMC12012225 DOI: 10.1038/s41598-025-96280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025] Open
Abstract
Although light microscopy has been used to examine the early trafficking of collagen within the cell, much of our understanding of the detailed organisation of cell deposited collagen is from static electron microscopy studies. To understand the dynamics of live cell collagen deposition and fibril organisation, we generated a bright photostable mNGCol1α2 fusion protein and employed a range of microscopy techniques to follow its intracellular transport and elucidate extracellular fibril formation. Our findings reveal the dynamics of fibril growth and the dynamic nature of collagen network interactions at the cellular level. Notably we observed molecular events that build network organisation, including fibril bundling, bifurcation, directionality along existing fibrils, and looping/intertwining behaviours. Strikingly, mNGCol1α2 fluorescence intensity maxima can mark a fibril before another growing collagen fibril intersects at this location. Real-time, high-resolution imaging of collagen has enabled fibrillogenesis and organisational dynamics to be visualised together in an actively secreting cellular system. We also show that the N-terminal protease site is not an absolute requirement for collagen fibril incorporation. This approach paves the way for assessing the dynamic organisation and assembly of collagen into the extracellular matrix in skin models and other tissues during health, ageing and disease.
Collapse
Affiliation(s)
- Olivia Kent
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Eleanor R Casey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Max Brown
- The Procter & Gamble Company, Newcastle Innovation Centre, Newcastle-Upon-Tyne, NE12 9TS, UK
| | - Steven Bell
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Matthew C Ehrman
- Procter & Gamble International Operations SA SG Branch, 70 Biopolis Street, Singapore, 138547, Singapore
| | | | - Arto Määttä
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Adam M Benham
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Timothy J Hawkins
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
2
|
Zhang Y, Quindoza GM, Mizuno HL, Nakagawa Y, Tanaka T, Anraku Y, Ikoma T. Preparation of Hydroxyapatite-Aligned Collagen Sheets and Their Evaluation for Fibroblast Adhesion and Collagen Secretion. ACS Biomater Sci Eng 2025; 11:1072-1083. [PMID: 39847580 DOI: 10.1021/acsbiomaterials.4c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The structure of many native tissues consists of aligned collagen (Col) fibrils, some of which are further composited with dispersed hydroxyapatite (HAp) nanocrystals. Accurately mimicking this inherent structure is a promising approach to enhance scaffold biocompatibility in tissue engineering. In this study, biomimetic sheets composed of highly aligned Col fibrils were fabricated using a plastic compression and tension method, followed by the deposition of HAp nanocrystals on the surface via an alternate soaking method. The fabricated Col sheets exhibited high solid density, retained the native periodicity (D-band) of Col fibrils, and displayed plate-like HAp nanocrystals dispersed on their surface. In vitro experiments demonstrated that these sheets could regulate fibroblasts adhesion, inducing more elongated nuclei and oriented actin bundles on the aligned Col sheets. Analysis of focal adhesion assembly revealed greater cell focal adhesions on the aligned composite sheets compared to those with random Col fibril structures. Fibroblasts cultured on aligned Col with partly HAp-mineralized sheets exhibited the highest cell-extracellular matrix (ECM) protein secretion, highlighting that HAp incorporation and fibroblast alignment synergistically promote early ECM formation and wound healing. These results suggest that highly aligned Col fibrils with dispersed HAp nanocrystals, closely mimicking the microarchitecture of natural tissues, have significant potential to control cell adhesion and protein secretion for tissue engineering applications.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Gerardo Martin Quindoza
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hayato Laurence Mizuno
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuhiro Nakagawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiaki Tanaka
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259, Nagatsuta, Yokohama 226-8501, Japan
| | - Yasutaka Anraku
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
van Dijk FS, Angwin C, Ghali N, Zschocke J, Wagner B. Non-genetic diagnostic investigations in monogenic Ehlers-Danlos syndromes. MED GENET-BERLIN 2024; 36:247-254. [PMID: 39629472 PMCID: PMC11610441 DOI: 10.1515/medgen-2024-2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
With increased application of Next Generation Sequencing (NGS) in the diagnosis of monogenic Ehlers-Danlos syndromes, there is an increased probability to identify variants of unknown significance. Additionally, in some cases no genetic alteration may be identified whilst there is a strong clinical suspicion on a monogenic EDS type. The diagnostic value of non-genetic investigations, which prior to NGS were quite commonly used to support the clinical diagnosis of monogenic EDS types, is explored. In addition, new structural/functional investigations that could deliver evidence towards pathogenicity are discussed. It appears that certain functional and/or structural investigations used frequently in the past can remain helpful and can provide additional evidence that may confirm a clinical diagnosis of a monogenic EDS type. However, there is a need for the development of novel structural/functional studies for monogenic types of EDS. The level of evidence of such studies for application in the established diagnostic DNA variant classification criteria remains to be determined.
Collapse
Affiliation(s)
- Fleur S. van Dijk
- London North West University Health Care NHS TrustNational EDS service, London North West University Health Care, NHS TrustWatford RoadHA1 3UJHarrowUnited Kingdom
| | - Chloe Angwin
- London North West University Health Care NHS TrustNational EDS serviceWatford RoadHA1 3UJHarrowUnited Kingdom
| | - Neeti Ghali
- Imperial College LondonDepartment of Metabolism, Digestion andSW7 2AZLondonUnited Kingdom
| | - Johannes Zschocke
- Medical University InnsbruckInstitute of Human Genetics, Department of GeneticsPeter-Mayr-Str. 16020InnsbruckAustria
| | - Bart Wagner
- Royal Hallamshire HospitalElectron microscopy section, Histopathology DepartmentGlossop RoadS10 2JFSheffieldUnited Kingdom
| |
Collapse
|
4
|
Wei M, Jeevithan L, Li N, Liu L, Xu J, Wu W, Elango J. Stem-Cell-Regenerative and Protective Effects of Squid ( Symplectoteuthis oualaniensis) Skin Collagen Peptides against H 2O 2-Induced Fibroblast Injury. Mar Drugs 2024; 22:255. [PMID: 38921566 PMCID: PMC11204806 DOI: 10.3390/md22060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Recently, there has been a growing interest in collagen peptides derived from marine sources for their notable ability to protect skin cells against apoptosis induced by oxidants. Therefore, the current study aimed to investigate the fundamental properties of collagen peptides, including their physicochemical, thermal, structural, stem-cell-regenerative, and skin-cell-protective effects, in comparison to commercial collagen peptides. The acid-soluble (ASC) and pepsin-soluble (PSC) collagens exhibited three distinct bands on SDS-PAGE, namely α (α1 and α2), β, and γ chains, confirming a type I pattern. The thermal profiles obtained from TG and DSC analyses confirmed the denaturation of PSC and ASC at temperatures ranging from 51.94 to 56.4 °C and from 52.07 to 56.53 °C, respectively. The purified collagen peptides were analyzed using SDS-PAGE and MALDI-TOF mass spectrometry, revealing a mass range of 900-15,000 Da. Furthermore, the de novo peptide sequence analysis confirmed the presence of the Gly-X-Y repeating sequence in collagen peptides. Collagen peptide treatments significantly enhanced HFF-1 cell proliferation and migration compared to the control group. ELISA results confirmed the potential interactions between collagen peptides and HFF-1 cells through α2β1, α10β1, and α11β1 integrin receptors. Notably, collagen peptide treatment effectively restored the proliferation of HFF-1 cells damaged by H2O2. Consequently, the advantageous characteristics of squid skin collagen peptides highlight their promising role in regenerative medicine.
Collapse
Affiliation(s)
- Mingjun Wei
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Lakshmi Jeevithan
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Na Li
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Lixin Liu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
- Putuo Sub-Center of International Joint Research Center for Marine Biological Sciences, Zhongke Road, Putuo District, Zhoushan 316104, China
| | - Jiren Xu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.W.); (L.J.); (N.L.); (L.L.); (J.X.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| |
Collapse
|
5
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion prior to assembly of the Caenorhabditis elegans cuticle. PLoS Genet 2023; 19:e1010944. [PMID: 37721936 PMCID: PMC10538796 DOI: 10.1371/journal.pgen.1010944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular puncta. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and the control of matrix assembly in vivo. Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K. Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer D. Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John I. Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer R. G. Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Andrew D. Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion during assembly of the Caenorhabditis elegans cuticle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.542650. [PMID: 37333289 PMCID: PMC10274747 DOI: 10.1101/2023.06.06.542650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular aggregates. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and in the spatial and temporal restriction of matrix assembly in vivo . Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - John I Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer R G Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Andrew D Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| |
Collapse
|
7
|
Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102123. [PMID: 35632005 PMCID: PMC9146582 DOI: 10.3390/polym14102123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.
Collapse
|