1
|
Kaier A, Ntefidou M. The Extended Synaptotagmins of Physcomitrium patens. PLANTS (BASEL, SWITZERLAND) 2025; 14:1027. [PMID: 40219095 PMCID: PMC11990657 DOI: 10.3390/plants14071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Membrane contact sites (MCSs) between the endoplasmic reticulum and the plasma membrane enable the transport of lipids without membrane fusion. Extended Synaptotagmins (ESYTs) act at MCSs, functioning as tethers between two membrane compartments. In plants, ESYTs have been mainly investigated in A. thaliana and shown to maintain the integrity of the plasma membrane, especially during stress responses like cold acclimatization, mechanical trauma, and salt stress. ESYTs are present at the MCSs of plasmodesmata, where they regulate defense responses by modulating cell-to-cell transfer of pathogens. Here, the analysis of ESYTs was expanded to the bryophyte Physcomitrium patens, an extant representative of the earliest land plant lineages. P. patens was found to contain a large number of ESYTs, distributed over all previously established classes and an additional class not present in A. thaliana. Motif discovery identified regions in the Synaptotagmin-like mitochondrial (SMP) domain that may explain phylogenetic relationships as well as protein function. The adaptation mechanisms of P. patens necessary to conquer land and its simple tissue structure make it highly suitable as a model organism to study ESYT functions in tip growth, stress responses, and plasmodesmata-mediated transport, and open new directions of research regarding the function of MCSs in cellular processes and plant evolution.
Collapse
Affiliation(s)
- Alexander Kaier
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | - Maria Ntefidou
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Pérez-Sancho J, Smokvarska M, Dubois G, Glavier M, Sritharan S, Moraes TS, Moreau H, Dietrich V, Platre MP, Paterlini A, Li ZP, Fouillen L, Grison MS, Cana-Quijada P, Immel F, Wattelet V, Ducros M, Brocard L, Chambaud C, Luo Y, Ramakrishna P, Bayle V, Lefebvre-Legendre L, Claverol S, Zabrady M, Martin PGP, Busch W, Barberon M, Tilsner J, Helariutta Y, Russinova E, Taly A, Jaillais Y, Bayer EM. Plasmodesmata act as unconventional membrane contact sites regulating intercellular molecular exchange in plants. Cell 2025; 188:958-977.e23. [PMID: 39983675 DOI: 10.1016/j.cell.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 11/26/2024] [Indexed: 02/23/2025]
Abstract
Membrane contact sites (MCSs) are fundamental for intracellular communication, but their role in intercellular communication remains unexplored. We show that in plants, plasmodesmata communication bridges function as atypical endoplasmic reticulum (ER)-plasma membrane (PM) tubular MCSs, operating at cell-cell interfaces. Similar to other MCSs, ER-PM apposition is controlled by a protein-lipid tethering complex, but uniquely, this serves intercellular communication. Combining high-resolution microscopy, molecular dynamics, and pharmacological and genetic approaches, we show that cell-cell trafficking is modulated through the combined action of multiple C2 domains transmembrane domain proteins (MCTPs) 3, 4, and 6 ER-PM tethers and phosphatidylinositol-4-phosphate (PI4P) lipid. Graded PI4P amounts regulate MCTP docking to the PM, their plasmodesmata localization, and cell-cell permeability. SAC7, an ER-localized PI4P-phosphatase, regulates MCTP4 accumulation at plasmodesmata and modulates cell-cell trafficking capacity in a cell-type-specific manner. Our findings expand MCS functions in information transmission from intracellular to intercellular cellular activities.
Collapse
Affiliation(s)
- Jessica Pérez-Sancho
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Marija Smokvarska
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Gwennogan Dubois
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | - Marie Glavier
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Sujith Sritharan
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Tatiana S Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Hortense Moreau
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Victor Dietrich
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Matthieu P Platre
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrea Paterlini
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Ziqiang P Li
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Pepe Cana-Quijada
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Françoise Immel
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Valerie Wattelet
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Mathieu Ducros
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Priya Ramakrishna
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | | | | | - Matej Zabrady
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Pascal G P Martin
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, 33882 Villenave d'Ornon, France
| | - Wolfgang Busch
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marie Barberon
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK; Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France.
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France.
| |
Collapse
|
3
|
García‐Hernández S, Rubio L, Rivera‐Moreno M, Pérez‐Sancho J, Morello‐López J, Esteban del Valle A, Benítez‐Fuente F, Beuzón CR, Macho AP, Ruiz‐López N, Albert A, Botella MA. Functional and Structural Analysis Reveals Distinct Biological Roles of Plant Synaptotagmins in Response to Environmental Stress. PLANT, CELL & ENVIRONMENT 2025; 48:260-271. [PMID: 39253952 PMCID: PMC11615412 DOI: 10.1111/pce.15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
Endoplasmic reticulum-plasma membrane contact sites (ER-PM CSs) are evolutionarily conserved membrane domains found in all eukaryotes, where the ER closely interfaces with the PM. This short distance is achieved in plants through the action of tether proteins such as synaptotagmins (SYTs). Arabidopsis comprises five SYT members (SYT1-SYT5), but whether they possess overlapping or distinct biological functions remains elusive. SYT1, the best-characterized member, plays an essential role in the resistance to abiotic stress. This study reveals that the functionally redundant SYT1 and SYT3 genes, but not SYT5, are involved in salt and cold stress resistance. We also show that, unlike SYT5, SYT1 and SYT3 are not required for Pseudomonas syringae resistance. Since SYT1 and SYT5 interact in vivo via their SMP domains, the distinct functions of these proteins cannot be caused by differences in their localization. Interestingly, structural phylogenetic analysis indicates that the SYT1 and SYT5 clades emerged early in the evolution of land plants. We also show that the SYT1 and SYT5 clades exhibit different structural features in their SMP and Ca2+ binding of their C2 domains, rationalizing their distinct biological roles.
Collapse
Affiliation(s)
- Selene García‐Hernández
- Área de Mejora y Fisiología de PlantasInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
| | - Lourdes Rubio
- Departamento de Botánica y Fisiología VegetalUniversidad de MálagaMálagaSpain
| | - María Rivera‐Moreno
- Departamento de Cristalografía y Biología EstructuralInstituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (IQF‐CSIC)MadridSpain
| | - Jessica Pérez‐Sancho
- Área de Mejora y Fisiología de PlantasInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jorge Morello‐López
- Área de Mejora y Fisiología de PlantasInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
| | - Alicia Esteban del Valle
- Área de Mejora y Fisiología de PlantasInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
| | - Francisco Benítez‐Fuente
- Área de Mejora y Fisiología de PlantasInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
| | - Carmen R. Beuzón
- Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
| | - Noemi Ruiz‐López
- Área de Mejora y Fisiología de PlantasInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
| | - Armando Albert
- Departamento de Cristalografía y Biología EstructuralInstituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (IQF‐CSIC)MadridSpain
| | - Miguel A. Botella
- Área de Mejora y Fisiología de PlantasInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaMálagaSpain
| |
Collapse
|
4
|
Škrabálková E, Pejchar P, Potocký M. Exploring lipid-protein interactions in plant membranes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5251-5266. [PMID: 38708855 PMCID: PMC11389841 DOI: 10.1093/jxb/erae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Once regarded as mere membrane building blocks, lipids are now recognized as diverse and intricate players that mold the functions, identities, and responses of cellular membranes. Although the interactions of lipids with integral and peripheral membrane proteins are crucial for their localization, activity, and function, how proteins bind lipids is still far from being thoroughly explored. Describing and characterizing these dynamic protein-lipid interactions is thus essential to understanding the membrane-associated processes. Here we review the current range of experimental techniques employed to study plant protein-lipid interactions, integrating various methods. We summarize the principles, advantages, and limitations of classical in vitro biochemical approaches, including protein-lipid overlays and various liposome binding assays, and complement them with in vivo microscopic techniques centered around the use of genetically encoded lipid sensors and pharmacological or genetic membrane lipid manipulation tools. We also highlight several emerging techniques still awaiting their advancement into plant membrane research and emphasize the need to use complementary experimental strategies as key for elucidating the mechanistic roles of protein-lipid interactions in plant cell biology.
Collapse
Affiliation(s)
- Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Ji J, Du S, Wang K, Qi Z, Zhang C, Wang R, Bruening G, Wang P, Duanmu D, Fan Q. Cowpea lipid transfer protein 1 regulates plant defense by inhibiting the cysteine protease of cowpea mosaic virus. Proc Natl Acad Sci U S A 2024; 121:e2403424121. [PMID: 39159367 PMCID: PMC11363299 DOI: 10.1073/pnas.2403424121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.
Collapse
Affiliation(s)
- Jie Ji
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shengli Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Kun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Ziyan Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Chunyang Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Rui Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - George Bruening
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Qiuling Fan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
6
|
Kumar A, Krausko M, Jásik J. SYNAPTOTAGMIN 4 is expressed mainly in the phloem and participates in abiotic stress tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1363555. [PMID: 39011301 PMCID: PMC11246894 DOI: 10.3389/fpls.2024.1363555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/04/2024] [Indexed: 07/17/2024]
Abstract
Plant synaptotagmins structurally resemble animal synaptotagmins and extended-synaptotagmins. Animal synaptotagmins are well-characterized calcium sensors in membrane trafficking, and extended-synaptotagmins mediate lipid transfer at the endoplasmic reticulum-plasma membrane contact sites. Here, we characterize SYNAPTOTAGMIN 4 (SYT4), which belongs to the six-member family in Arabidopsis. Fluorometric GUS assay showed that the SYT4 promoter was strongest in roots and the least active in rosettes and cauline leaves, which was confirmed by qPCR. In seedlings, promoter activity was influenced by several factors, such as plant growth regulators, mannitol, sucrose, polyethylene glycol and cold. GUS histochemistry revealed SYT4 promoter activity in the phloem of all organs and even almost exclusively in sieve element precursors and differentiating sieve elements. Accordingly, the SYT-GFP fusion protein also accumulated in these cells with maximal abundance in sieve element precursors. The protein formed a network in the cytoplasm, but during sieve tube differentiation, it deposited at the cell periphery and disappeared from mature tubes. Using photoconvertible fluorescence technology, we showed that a high abundance of SYT4 protein in meristematic protophloem cells was due to its extensive synthesis. SYT4 protein synthesis was interrupted in differentiating sieve elements, but protein degradation was also reduced. In addition to phloem, the fusion protein was detected in shoot and root stem cell niche as early as the late heart stage of the embryo. We isolated and molecularly and biologically characterized five syt4 T-DNA insertion alleles and subjected them to phenotype analysis. The allele with the C2B domain interrupted by an T-DNA insertion exhibits increased sensitivity to factors such as auxins, osmotics, salicylic acid, sodium chloride, and the absence of sucrose in the root growth test.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Experimental Plant Biology, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Krausko
- Department of Experimental Plant Biology, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Jásik
- Department of Experimental Plant Biology, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Benitez-Fuente F, Botella MA. Biological roles of plant synaptotagmins. Eur J Cell Biol 2023; 102:151335. [PMID: 37390668 DOI: 10.1016/j.ejcb.2023.151335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Plant synaptotagmins (SYTs) are resident proteins of the endoplasmic reticulum (ER). They are characterized by an N-terminal transmembrane region and C2 domains at the C-terminus, which tether the ER to the plasma membrane (PM). In addition to their tethering role, SYTs contain a lipid-harboring SMP domain, essential for shuttling lipids between the ER and the PM. There is now abundant literature on Arabidopsis SYT1, the best-characterized family member, which link it to biotic and abiotic responses as well as to ER morphology. Here, we review the current knowledge of SYT members, focusing on their role in stress, and discuss how these roles can be related to their tethering and lipid transport functions. Finally, we contextualize this information about SYTs with their homologs, the yeast tricalbins and the mammalian extended synaptotagmins.
Collapse
Affiliation(s)
- Francisco Benitez-Fuente
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 12907, Spain
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 12907, Spain.
| |
Collapse
|
8
|
Cui M, Gupta SK, Bauer P. Role of the plant-specific calcium-binding C2-DOMAIN ABSCISIC ACID-RELATED (CAR) protein family in environmental signaling. Eur J Cell Biol 2023; 102:151322. [PMID: 37211005 DOI: 10.1016/j.ejcb.2023.151322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Many signaling processes rely on information decoding at the plasma membrane, and membrane-associated proteins and their complexes are fundamental for regulating this process. Still many questions exist as to how protein complexes are assembled and function at membrane sites to change identity and dynamics of membrane systems. Peripheral membrane proteins containing a calcium and phospholipid-binding C2-domain can act in membrane-related signaling by providing a tethering function so that protein complexes form. C2 domain proteins termed C2-DOMAIN ABSCISIC ACID-RELATED (CAR) proteins are plant-specific, and the functional relevance of this C2 domain protein subgroup is just emerging. The ten Arabidopsis CAR proteins CAR1 to CAR10 have a single C2 domain with a plant-specific insertion, the so-called "CAR-extra-signature" or also termed "sig domain". Via this "sig domain" CAR proteins can bind signaling protein complexes of different kinds and act in biotic and abiotic stress, blue light and iron nutrition. Interestingly, CAR proteins can oligomerize in membrane microdomains, and their presence in the nucleus can be linked with nuclear protein regulation. This shows that CAR proteins may play unprecedented roles in coordinating environmental responses and assembling required protein complexes to transmit information cues between plasma membrane and nucleus. The aim of this review is to summarize structure-function characteristics of the CAR protein family and assemble findings from CAR protein interactions and physiological functions. From this comparative investigation we extract common principles about the molecular operations that CAR proteins may fulfill in the cell. We also deduce functional properties of the CAR protein family based on its evolution and gene expression profiles. We highlight open questions and suggest novel avenues to prove and understand the functional networks and roles played by this protein family in plants.
Collapse
Affiliation(s)
- Mingming Cui
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Shishir K Gupta
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany.
| |
Collapse
|
9
|
Xue M, Cao Y, Shen C, Guo W. Computational Advances of Protein/Neurotransmitter-membrane Interactions Involved in Vesicle Fusion and Neurotransmitter Release. J Mol Biol 2023; 435:167818. [PMID: 36089056 DOI: 10.1016/j.jmb.2022.167818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 02/04/2023]
Abstract
Vesicle fusion is of crucial importance to neuronal communication at neuron terminals. The exquisite but complex fusion machinery for neurotransmitter release is tightly controlled and regulated by protein/neurotransmitter-membrane interactions. Computational 'microscopies', in particular molecular dynamics simulations and related techniques, have provided notable insight into the physiological process over the past decades, and have made enormous contributions to fields such as neurology, pharmacology and pathophysiology. Here we review the computational advances of protein/neurotransmitter-membrane interactions related to presynaptic vesicle-membrane fusion and neurotransmitter release, and outline the in silico challenges ahead for understanding this important physiological process.
Collapse
Affiliation(s)
- Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yuwei Cao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Chun Shen
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Heilmann M, Heilmann I. Regulators regulated: Different layers of control for plasma membrane phosphoinositides in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102218. [PMID: 35504191 DOI: 10.1016/j.pbi.2022.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The membranes of plant cells serve diverse physiological roles, which are defined largely by the localized and dynamic recruitment of proteins. Signaling lipids, such as phosphoinositides, can aid protein recruitment to the plasma membrane via specific recognition of their head groups and influence vesicular trafficking, cytoskeletal dynamics and other processes, with ramifications for plant tissue architecture and development. Phosphoinositide abundance is dynamically regulated. Recent advances indicate various levels of control during development or upon environmental triggers, including transcriptional or posttranslational regulation of enzymes balancing biogenesis and degradation, or the nano-organization of membranes into self-organizing physiologically distinct microenvironments. As patterns of interlinked mechanisms emerge, the horizons of what we do not understand become more and more defined.
Collapse
Affiliation(s)
- Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany.
| |
Collapse
|
11
|
Qian T, Li C, Liu F, Xu K, Wan C, Liu Y, Yu H. Arabidopsis synaptotagmin 1 mediates lipid transport in a lipid composition-dependent manner. Traffic 2022; 23:346-356. [PMID: 35451158 DOI: 10.1111/tra.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
The endoplasmic reticulum (ER) - plasma membrane (PM) contact sites (EPCSs) are structurally conserved in eukaryotes. The Arabidopsis ER-anchored synaptotagmin 1 (SYT1), enriched in EPCSs, plays a critical role in plant abiotic stress tolerance. It has become clear that SYT1 interacts with PM to mediate ER-PM connectivity. However, whether SYT1 performs additional functions at EPCSs remains unknown. Here, we reported that SYT1 efficiently transfers phospholipids between membranes. The lipid transfer activity of SYT1 is highly dependent on PI(4,5)P2 , a signal lipid accumulated at the PM under abiotic stress. Mechanically, while SYT1 transfers lipids fundamentally through the synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain, the efficient lipid transport requires the C2A domain-mediated membrane tethering. Interestingly, we observed that Ca2+ could stimulate SYT1-mediated lipid transport. In addition to PI(4,5)P2 , the Ca2+ activation requires the phosphatidylserine, another negatively charged lipid on the opposed membrane. Together, our studies identified Arabidopsis SYT1 as a lipid transfer protein at EPCSs and demonstrated it takes conserved as well as divergent mechanisms with other extend-synaptotagmins. The critical role of lipid composition and Ca2+ reveals SYT1-mediated lipid transport is highly regulated by signals in response to abiotic stresses.
Collapse
Affiliation(s)
- Tiantian Qian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chenlu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Furong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|