1
|
Wang Y, Wang X, Sun H, Zhang Z, Gu J. LncRNA MCM3AP-AS1 promotes chemoresistance in triple-negative breast cancer through the miR-524-5p/RBM39 axis. Mol Cell Biochem 2025; 480:371-384. [PMID: 38472681 DOI: 10.1007/s11010-023-04908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of BC, with unfavorable treatment outcomes. Evidence suggests the engagement of lncRNA MCM3AP-AS1 in BC development. This study investigated the action of MCM3AP-AS1 in chemoresistance of TNBC cells. Drug-resistant TNBC cell lines SUM159PTR and MDA-MB-231R were constructed by exposure to increasing concentrations of doxorubicin/docetaxel (DOX/DXL). MCM3AP-AS1 and miR-524-5p expression levels were determined by RT-qPCR. RNA binding motif 39 (RBM39) level was measured using Western blot. Cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry. The targeted binding of miR-524-5p with MCM3AP-AS1 or RBM39 was predicted by ECORI database and validated by dual-luciferase assays. The gain-and-loss of function assays were conducted in cells to investigate the interactions among MCM3AP-AS1, miR-524-5p, and RBM39. TNBC xenograft mouse models were established through subcutaneous injection of MCM3AP-AS1-silencing MDA-MB-231R cells and intraperitoneally administrated with DOX/DXL to verify the role of MCM3AP-AS1 in vivo. MCM3AP-AS1 was upregulated in drug-resistant TNBC cells, and MCM3AP-AS1 silencing could sensitize drug-resistant TNBC cells to chemotherapeutic drugs by promoting apoptosis. MCM3AP-AS1 targeted miR-524-5p. After DOX/DXL treatment, miR-524-5p inhibition partially reversed the effect of MCM3AP-AS1 silencing on inhibiting chemoresistance and promoting apoptosis of drug-resistant TNBC cells. miR-524-5p targeted RBM39. Silencing MCM3AP-AS1 promoted apoptosis via the miR-524-5p/RBM39 axis, thereby enhancing chemosensitivity of drug-resistant TNBC cells. MCM3AP-AS1 knockdown upregulated miR-524-5p, downregulated RBM39, and restrained tumor development in vivo. MCM3AP-AS1 silencing potentiates apoptosis of drug-resistant TNBC cells by upregulating miR-524-5p and downregulating RBM39, thereby suppressing chemoresistance in TNBC.
Collapse
Affiliation(s)
- Yueping Wang
- Department of Medical Laboratory Science, Anhui No. 2 Provincial People's Hospital, 1868 #Dangshan Road, North 2nd Ring, Hefei, 230041, Anhui, China
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Xuedong Wang
- Department of Medical Laboratory Science, Anhui No. 2 Provincial People's Hospital, 1868 #Dangshan Road, North 2nd Ring, Hefei, 230041, Anhui, China.
| | - Haiyi Sun
- School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ziyun Zhang
- Department of Medical Laboratory Science, Anhui No. 2 Provincial People's Hospital, 1868 #Dangshan Road, North 2nd Ring, Hefei, 230041, Anhui, China
| | - Juan Gu
- Department of Medical Laboratory Science, Anhui No. 2 Provincial People's Hospital, 1868 #Dangshan Road, North 2nd Ring, Hefei, 230041, Anhui, China
| |
Collapse
|
2
|
Jang JH, Kim JY, Lee TJ. Recent advances in anticancer mechanisms of molecular glue degraders: focus on RBM39-dgrading synthetic sulfonamide such as indisulam, E7820, tasisulam, and chloroquinoxaline sulfonamide. Genes Genomics 2024; 46:1345-1361. [PMID: 39271535 DOI: 10.1007/s13258-024-01565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Synthetic sulfonamide anticancer drugs, including E7820, indisulam, tasisulam, and chloroquinoxaline sulfonamide, exhibit diverse mechanisms of action and therapeutic potential, functioning as molecular glue degraders. E7820 targets RBM39, affecting RNA splicing and angiogenesis by suppressing integrin α2. Phase I studies have demonstrated some stability in advanced solid malignancies; however, further efficacy studies are required. Indisulam causes G1 cell cycle arrest and delays the G1/S transition by modulating splicing through RBM39 degradation via DCAF15. Despite its limited initial efficacy, it shows promise in combination therapies, particularly for hematopoietic malignancies and gliomas. Tasisulam inhibits VEGF signaling, suppresses angiogenesis, and induces apoptosis. Although early trials indicated broad activity, safety concerns have halted its development. Chloroquinoxaline sulfonamide, initially investigated for cell cycle arrest and topoisomerase II inhibition, was discontinued owing to its limited efficacy and toxicity, despite promising initial results. Recent studies revealed the structural interaction of E7820 with DCAF15 and RBM39, although phase II trials on myeloid malignancies have shown limited efficacy. Indisulam is effective against glioblastoma and neuroblastoma, with potential synergy in combination therapies and metabolic disruption. Recent research on tasisulam reveals its potential in cancer therapy by targeting RBM39 degradation through DCAF15-mediated pathways. Understanding these mechanisms could lead to new treatments that affect alternative splicing and improve cancer therapies Overall, although these drugs exhibit promising mechanisms of action, further research is required to optimize their clinical efficacy and safety.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
3
|
Shi M, Sun D, Deng L, Liu J, Zhang MJ. SRPK1 Promotes Glioma Proliferation, Migration, and Invasion through Activation of Wnt/β-Catenin and JAK-2/STAT-3 Signaling Pathways. Biomedicines 2024; 12:378. [PMID: 38397980 PMCID: PMC10886746 DOI: 10.3390/biomedicines12020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, the treatment of gliomas still relies primarily on surgery and radiochemotherapy. Although there are various drugs available, including temozolomide, the overall therapeutic effect is unsatisfactory, and the prognosis remains poor. Therefore, the in-depth study of the mechanism of glioma development and a search for new therapeutic targets are the keys to improving the therapeutic treatment of gliomas and improving the prognosis of patients. Immunohistochemistry is used to detect the expression of relevant molecules in tissues, qPCR and Western blot are used to detect the mRNA and protein expression of relevant molecules, CCK-8 (Cell Counting Kit-8) is used to assess cell viability and proliferation capacity, Transwell is used to evaluate cell migration and invasion ability, and RNA transcriptome sequencing is used to identify the most influential pathways. SRPK1 (SRSF protein kinase 1) is highly expressed in gliomas but is not expressed in normal tissues. Its expression is positively correlated with the grades of gliomas and negatively correlated with prognosis. SRPK1 significantly promotes the occurrence and development of gliomas. Knocking down SRPK1 leads to a significant decrease in the proliferation, migration, and invasion abilities of gliomas. Loss of SRPK1 expression induces G2/M phase arrest and mitotic catastrophe, leading to apoptosis in cells. Overexpression of SRPK1 activates the Wnt/β-catenin (wingless-int1/β-catenin) and JAK-2/STAT-3 (Janus kinase 2/signal transducer and activator of transcription 3) signaling pathways, promoting the proliferation, migration, and invasion of gliomas. Overexpression of SRPK1 rescues the reduced cell proliferation, migration, and invasion abilities caused by the silencing of β-catenin or JAK-2. A stable shRNA-LN229 cell line was constructed, and using a nude mouse model, it was found that stable knockout of SRPK1 significantly reduced the tumorigenic ability of glioma cells, as evidenced by a significant decrease in the subcutaneous tumor volume and weight in nude mice. We have demonstrated that SRPK1 is highly expressed in gliomas. Overexpression of SRPK1 activates the Wnt/β-catenin and JAK-2/STAT-3 signaling pathways, promoting the proliferation, migration, and invasion of gliomas. Silencing SRPK1-related signaling pathways may provide potential therapeutic options for glioma patients.
Collapse
Affiliation(s)
- Mengna Shi
- Department of Oncology, Wenzhou Medical University, Wenzhou 325027, China;
| | - Dan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan 232002, China
| | - Lu Deng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
| | - Jing Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Min-Jie Zhang
- Department of Oncology, Wenzhou Medical University, Wenzhou 325027, China;
| |
Collapse
|
4
|
Jaiswal AK, Thaxton ML, Scherer GM, Sorrentino JP, Garg NK, Rao DS. Small molecule inhibition of RNA binding proteins in haematologic cancer. RNA Biol 2024; 21:1-14. [PMID: 38329136 PMCID: PMC10857685 DOI: 10.1080/15476286.2024.2303558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
In recent years, advances in biomedicine have revealed an important role for post-transcriptional mechanisms of gene expression regulation in pathologic conditions. In cancer in general and leukaemia specifically, RNA binding proteins have emerged as important regulator of RNA homoeostasis that are often dysregulated in the disease state. Having established the importance of these pathogenetic mechanisms, there have been a number of efforts to target RNA binding proteins using oligonucleotide-based strategies, as well as with small organic molecules. The field is at an exciting inflection point with the convergence of biomedical knowledge, small molecule screening strategies and improved chemical methods for synthesis and construction of sophisticated small molecules. Here, we review the mechanisms of post-transcriptional gene regulation, specifically in leukaemia, current small-molecule based efforts to target RNA binding proteins, and future prospects.
Collapse
Affiliation(s)
- Amit K. Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Michelle L. Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Georgia M. Scherer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jacob P. Sorrentino
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Coomar S, Mota P, Penson A, Schwaller J, Abdel-Wahab O, Gillingham D. Overlaid Transcriptional and Proteome Analyses Identify Mitotic Kinesins as Important Targets of Arylsulfonamide-Mediated RBM39 Degradation. Mol Cancer Res 2023; 21:768-778. [PMID: 37255411 PMCID: PMC10395616 DOI: 10.1158/1541-7786.mcr-22-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 05/14/2023]
Abstract
Certain arylsulfonamides (ArSulf) induce an interaction between the E3 ligase substrate adaptor DCAF15 and the critical splicing factor RBM39, ultimately causing its degradation. However, degradation of a splicing factor introduces complex pleiotropic effects that are difficult to untangle, since, aside from direct protein degradation, downstream transcriptional effects also influence the proteome. By overlaying transcriptional data and proteome datasets, we distinguish transcriptional from direct degradation effects, pinpointing those proteins most impacted by splicing changes. Using our workflow, we identify and validate the upregulation of the arginine-and-serine rich protein (RSRP1) and the downregulation of the key kinesin motor proteins KIF20A and KIF20B due to altered splicing in the absence of RBM39. We further show that kinesin downregulation is connected to the multinucleation phenotype observed upon RBM39 depletion by ArSulfs. Our approach should be helpful in the assessment of potential cancer drug candidates which target splicing factors. IMPLICATIONS Our approach provides a workflow for identifying and studying the most strongly modulated proteins when splicing is altered. The work also uncovers a splicing-based approach toward pharmacologic targeting of mitotic kinesins.
Collapse
Affiliation(s)
- Seemon Coomar
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Pedro Mota
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Alexander Penson
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jürg Schwaller
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
6
|
Andus I, Prall F, Linnebacher M, Linnebacher CS. Establishment, characterization, and drug screening of low-passage patient individual non-small cell lung cancer in vitro models including the rare pleomorphic subentity. Front Oncol 2023; 13:1089681. [PMID: 37228492 PMCID: PMC10203569 DOI: 10.3389/fonc.2023.1089681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION For pre-clinical drug development and precision oncology research, robust cancer cell models are essential. Patient-derived models in low passages retain more genetic and phenotypic characteristics of their original tumors than conventional cancer cell lines. Subentity, individual genetics, and heterogeneity greatly influence drug sensitivity and clinical outcome. MATERIALS AND METHODS Here, we report on the establishment and characterization of three patient-derived cell lines (PDCs) of different subentities of non-small cell lung cancer (NSCLC): adeno-, squamous cell, and pleomorphic carcinoma. The in-depth characterization of our PDCs included phenotype, proliferation, surface protein expression, invasion, and migration behavior as well as whole-exome and RNA sequencing. Additionally, in vitro drug sensitivity towards standard-of-care chemotherapeutic regimens was evaluated. RESULTS The pathological and molecular properties of the patients' tumors were preserved in the PDC models HROLu22, HROLu55, and HROBML01. All cell lines expressed HLA I, while none were positive for HLA II. The epithelial cell marker CD326 and the lung tumor markers CCDC59, LYPD3, and DSG3 were also detected. The most frequently mutated genes included TP53, MXRA5, MUC16, and MUC19. Among the most overexpressed genes in tumor cells compared to normal tissue were the transcription factors HOXB9, SIM2, ZIC5, SP8, TFAP2A, FOXE1, HOXB13, and SALL4; the cancer testis antigen CT83; and the cytokine IL23A. The most downregulated genes on the RNA level encode the long non-coding RNA LANCL1-AS1, LINC00670, BANCR, and LOC100652999; the regulator of angiogenesis ANGPT4; the signaling molecules PLA2G1B and RS1; and the immune modulator SFTPD. Furthermore, neither pre-existing therapy resistances nor drug antagonistic effects could be observed. CONCLUSION In summary, we successfully established three novel NSCLC PDC models from an adeno-, a squamous cell, and a pleomorphic carcinoma. Of note, NSCLC cell models of the pleomorphic subentity are very rare. The detailed characterization including molecular, morphological, and drug-sensitivity profiling makes these models valuable pre-clinical tools for drug development applications and research on precision cancer therapy. The pleomorphic model additionally enables research on a functional and cell-based level of this rare NCSLC subentity.
Collapse
Affiliation(s)
- Ingo Andus
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Christina S. Linnebacher
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
7
|
Eléouët M, Lu C, Zhou Y, Yang P, Ma J, Xu G. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194902. [PMID: 36535628 DOI: 10.1016/j.bbagrm.2022.194902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding protein 39 (RBM39) involves in pre-mRNA splicing and transcriptional regulation. RBM39 is dysregulated in many cancers and its upregulation enhances cancer cell proliferation. Recently, it has been discovered that aryl sulfonamides act as molecular glues to recruit RBM39 to the CRL4DCAF15 E3 ubiquitin ligase complex for its ubiquitination and proteasomal degradation. Therefore, various studies have focused on the degradation of RBM39 by aryl sulfonamides in the aim of finding new cancer therapeutics. These discoveries also attracted focus for thorough study on the biological functions of RBM39. RBM39 was found to regulate the splicing and transcription of genes mainly involved in pre-mRNA splicing, cell cycle regulation, DNA damage response, and metabolism, but the understanding of these regulations is still in its infancy. This article reviews the advances of the current literature and discusses the remaining key issues on the biological function and dynamic regulation of RBM39 at the post-translational level.
Collapse
Affiliation(s)
- Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yijia Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|