1
|
Sönmez E, Yan S, Lin MS, Baumgartner M. MAP4 kinase-regulated reduced CLSTN1 expression in medulloblastoma is associated with increased invasiveness. Sci Rep 2025; 15:946. [PMID: 39762313 PMCID: PMC11704044 DOI: 10.1038/s41598-024-84753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling. We previously identified CLSTN1 as a putative target of the pro-invasive kinase MAP4K4, which we found to reduce CLSTN1 surface expression. Herein, we explored the expression and functional significance of CLSTN1 in MB. We found that CLSTN1 expression is decreased in primary MB tumors compared to tumor-free cerebellum or brain tissues. CLSTN1 is expressed in laboratory-established MB cell lines, where it localized to the plasma membrane, intracellular vesicular structures, and regions of cell-cell contact. The reduction of CLSTN1 expression significantly increased growth factor-driven invasiveness. Pharmacological inhibition of pro-migratory MAP4 kinases caused increased CLSTN1 expression and CLSTN1 accumulation in cell-cell contacts. Co-culture of tumor cells with astrocytes increased CLSTN1 localization in cell-cell contacts, which was further enhanced by MAP4K inhibition. Our study revealed a repressive function of CLSTN1 in growth-factor-driven invasiveness in MB, identified MAP4 kinases as repressors of CLSTN1 recruitment to cell-cell contacts, and points towards CLSTN1 implication in the kinase-controlled regulation of tumor-microenvironment interaction.
Collapse
Affiliation(s)
- Ece Sönmez
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Shen Yan
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Meng-Syuan Lin
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Xitlally PN, Alejandro AS, Norma HP, Mario OM, Enrique CP, Cesar CR, José LL, Pedro BB, Juan-Manuel HM, Oscar A. Prognostic impact of nectin-like molecule-5 (CD155) expression in non-small cell lung cancer. J Transl Med 2024; 22:841. [PMID: 39267111 PMCID: PMC11391680 DOI: 10.1186/s12967-024-05471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND CD155 is a transmembrane protein that inhibits antitumor immune response and represents a predictor of worse prognosis in non-small-cell lung cancer (NSCLC). However, it remains unexplored its association with clinical characteristics and genomic status of Latin American patients. This study characterizes the CD155 expression and its clinical implications in this population. METHODS Tissue biopsies from 86 patients with locally-advanced or metastatic NSCLC were assessed for CD155 protein expression, ALK rearrangements and EGFR mutations. Cutoff values for high CD155 expression (CD155high) were determined from receiver operating characteristic (ROC) curves according to 2-year survival. It was evaluated its association with clinicopathological features, median progression-free survival (mPFS) and overall survival (mOS). RESULTS the cutoff score for CD155high was 155 in the entire cohort and in patients without oncogenic alterations, and it was 110 in patients with oncogenic alterations. Eighty-four patients (97.7%) were CD155 positive, of which fifty-six (65.0%) had CD155high. EGFR L858R mutation related to lower CD155 IHC score than exon 19 deletion. Individuals with CD155high showed a shorter mOS (13.0 vs. 30.8 months; HR: 1.96 [95% CI, 1.15-3.35]; p = 0.014). Patients without oncogenic alterations having a CD155high displayed shorter mPFS (1.6 vs. 6.4 months, HR: 2.09 [95% CI, 1.06-4.20]; p = 0.034) and mOS (2.9 vs. 23.1 months; HR: 1.27 [95% CI, 1.07- 4.42]; p = 0.032). Patients with oncogenic alterations having CD155high only showed a trend to shorter mOS (26.3 vs. 52.0 months; HR: 2.39 [95% CI, 0.98-5.83]; p = 0.058). CONCLUSION CD155high is a predictor of worse outcomes in patients with advanced NSCLC, predominantly among those without oncogenic alterations. CD155 could be a potential biomarker and a molecular target in patients with poor responses to current therapies.
Collapse
Affiliation(s)
- Popa-Navarro Xitlally
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico
| | - Avilés-Salas Alejandro
- Pathology department, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico
| | - Hernández-Pedro Norma
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico.
| | - Orozco-Morales Mario
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico
| | - Caballé-Pérez Enrique
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico
| | - Castillo-Ruiz Cesar
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico
| | - Lucio-Lozada José
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico
| | - Barrios-Bernal Pedro
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico
| | | | - Arrieta Oscar
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico.
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, 14080, Mexico.
| |
Collapse
|
3
|
Yang LQ, Huang AF, Xu WD. Biology of endophilin and it's role in disease. Front Immunol 2023; 14:1297506. [PMID: 38116012 PMCID: PMC10728279 DOI: 10.3389/fimmu.2023.1297506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Endophilin is an evolutionarily conserved family of protein that involves in a range of intracellular membrane dynamics. This family consists of five isoforms, which are distributed in various tissues. Recent studies have shown that Endophilin regulates diseases pathogenesis, including neurodegenerative diseases, tumors, cardiovascular diseases, and autoimmune diseases. In vivo, it regulates different biological functions such as vesicle endocytosis, mitochondrial morphological changes, apoptosis and autophagosome formation. Functional studies confirmed the role of Endophilin in development and progression of these diseases. In this study, we have comprehensively discussed the complex function of Endophilin and how the family contributes to diseases development. It is hoped that this study will provide new ideas for targeting Endophilin in diseases.
Collapse
Affiliation(s)
- Lu-Qi Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Bademosi AT, Decet M, Kuenen S, Calatayud C, Swerts J, Gallego SF, Schoovaerts N, Karamanou S, Louros N, Martin E, Sibarita JB, Vints K, Gounko NV, Meunier FA, Economou A, Versées W, Rousseau F, Schymkowitz J, Soukup SF, Verstreken P. EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation. Neuron 2023; 111:1402-1422.e13. [PMID: 36827984 PMCID: PMC10166451 DOI: 10.1016/j.neuron.2023.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Marianna Decet
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Nikolaos Louros
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ella Martin
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium.
| |
Collapse
|
5
|
Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol 2022; 12:1059513. [PMID: 36568222 PMCID: PMC9774001 DOI: 10.3389/fonc.2022.1059513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
The finely tuned integration of intra- and extracellular cues by components of the mitogen-activated protein kinase (MAPK) signaling pathways controls the mutually exclusive phenotypic manifestations of uncontrolled growth and tumor cell dissemination. The Ser/Thr kinase MAP4K4 is an upstream integrator of extracellular cues involved in both proliferation and cell motility control. Initially identified as an activator of the c-Jun N-terminal kinase (JNK), the discovery of diverse functions and additional effectors of MAP4K4 beyond JNK signaling has considerably broadened our understanding of this complex kinase. The implication of MAP4K4 in the regulation of cytoskeleton dynamics and cell motility provided essential insights into its role as a pro-metastatic kinase in cancer. However, the more recently revealed role of MAP4K4 as an activator of the Hippo tumor suppressor pathway has complicated the understanding of MAP4K4 as an oncogenic driver kinase. To develop a better understanding of the diverse functions of MAP4K4 and their potential significance in oncogenesis and tumor progression, we have collected and assessed the current evidence of MAP4K4 implication in molecular mechanisms that control proliferation and promote cell motility. A better understanding of these mechanisms is particularly relevant in the brain, where MAP4K4 is highly expressed and under pathological conditions either drives neuronal cell death in neurodegenerative diseases or cell dissemination in malignant tumors. We review established effectors and present novel interactors of MAP4K4, which offer mechanistic insights into MAP4K4 function and may inspire novel intervention strategies. We discuss possible implications of novel interactors in tumor growth and dissemination and evaluate potential therapeutic strategies to selectively repress pro-oncogenic functions of MAP4K4.
Collapse
Affiliation(s)
| | | | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Children’s Research Centre, Division of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|