1
|
Hori S, Mitani S. Male Caenorhabditis elegans optimizes avoidance behavior against acute and chronic stress for successful mating with hermaphrodites. ZOOLOGICAL LETTERS 2025; 11:4. [PMID: 40247307 PMCID: PMC12004570 DOI: 10.1186/s40851-025-00250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
The optimization of avoidance behaviors in response to stress is an instinctual life function universally present in animals. In many sexually dimorphic animals, males exhibit higher stress resistance than females, but there have been no reports of comparative studies on stress resistance in sexually dimorphic hermaphrodites capable of reproducing alone. In the present study, we aimed to utilize a reversal/turn behavioral choice to conduct a comparative analysis of optimized avoidance behavior patterns in hermaphrodite and male Caenorhabditis elegans. We found that C. elegans males showed greater resistance to physical movement under acute stress and to lifespan reduction under chronic stress than C. elegans hermaphrodites. Interestingly, males exhibited a stronger avoidance behavior pattern known as "turn" than did the hermaphrodites, even in response to mild acute stress stimuli, to which they responded as if they had been exposed to strong stimuli. Stress conditions can lead to unsuccessful mating in C. elegans, and exaggerated stress avoidance in males may have biological significance for successful mating. This sexual dimorphism in avoidance behavior optimization was attributed to neural circuits downstream of the AIB neurons, the center of turn behavior, suggesting the presence of a novel mechanism distinct from previously reported neural and molecular mechanisms of avoidance behavior optimization.
Collapse
Affiliation(s)
- Sayaka Hori
- Department of Biological Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630 - 8263, Japan.
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162 - 8666, Japan
| |
Collapse
|
2
|
Golinelli L, Geens E, Irvine A, McCoy CJ, Vandewyer E, Atkinson LE, Mousley A, Temmerman L, Beets I. Global analysis of neuropeptide receptor conservation across phylum Nematoda. BMC Biol 2024; 22:223. [PMID: 39379997 PMCID: PMC11462694 DOI: 10.1186/s12915-024-02017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The phylum Nematoda is incredibly diverse and includes many parasites of humans, livestock, and plants. Peptide-activated G protein-coupled receptors (GPCRs) are central to the regulation of physiology and numerous behaviors, and they represent appealing pharmacological targets for parasite control. Efforts are ongoing to characterize the functions and define the ligands of nematode GPCRs, with already most peptide GPCRs known or predicted in Caenorhabditis elegans. However, comparative analyses of peptide GPCR conservation between C. elegans and other nematode species are limited, and many nematode GPCRs remain orphan. A phylum-wide perspective on peptide GPCR profiles will benefit functional and applied studies of nematode peptide GPCRs. RESULTS We constructed a pan-phylum resource of C. elegans peptide GPCR orthologs in 125 nematode species using a semi-automated pipeline for analysis of predicted proteome datasets. The peptide GPCR profile varies between nematode species of different phylogenetic clades and multiple C. elegans peptide GPCRs have orthologs across the phylum Nematoda. We identified peptide ligands for two highly conserved orphan receptors, NPR-9 and NPR-16, that belong to the bilaterian galanin/allatostatin A (Gal/AstA) and somatostatin/allatostatin C (SST/AstC) receptor families. The AstA-like NLP-1 peptides activate NPR-9 in cultured cells and are cognate ligands of this receptor in vivo. In addition, we discovered an AstC-type peptide, NLP-99, that activates the AstC-type receptor NPR-16. In our pan-phylum resource, the phylum-wide representation of NPR-9 and NPR-16 resembles that of their cognate ligands more than those of allatostatin-like peptides that do not activate these receptors. CONCLUSIONS The repertoire of C. elegans peptide GPCR orthologs varies across phylogenetic clades and several peptide GPCRs show broad conservation in the phylum Nematoda. Our work functionally characterizes the conserved receptors NPR-9 and NPR-16 as the respective GPCRs for the AstA-like NLP-1 peptides and the AstC-related peptide NLP-99. NLP-1 and NLP-99 are widely conserved in nematodes and their representation matches that of their receptor in most species. These findings demonstrate the conservation of a functional Gal/AstA and SST/AstC signaling system in nematodes. Our dataset of C. elegans peptide GPCR orthologs also lays a foundation for further functional studies of peptide GPCRs in the widely diverse nematode phylum.
Collapse
Affiliation(s)
- Luca Golinelli
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Allister Irvine
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Ciaran J McCoy
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Elke Vandewyer
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Louise E Atkinson
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Haque R, Kurien SP, Setty H, Salzberg Y, Stelzer G, Litvak E, Gingold H, Rechavi O, Oren-Suissa M. Sex-specific developmental gene expression atlas unveils dimorphic gene networks in C. elegans. Nat Commun 2024; 15:4273. [PMID: 38769103 PMCID: PMC11106331 DOI: 10.1038/s41467-024-48369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.
Collapse
Affiliation(s)
- Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Sonu Peedikayil Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Stelzer
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Litvak
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
6
|
Konzman D, Fukushige T, Dagnachew M, Krause M, Hanover JA. O-GlcNAc transferase plays a non-catalytic role in C. elegans male fertility. PLoS Genet 2022; 18:e1010273. [PMID: 36383567 PMCID: PMC9710795 DOI: 10.1371/journal.pgen.1010273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/30/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Animal behavior is influenced by the competing drives to maintain energy and to reproduce. The balance between these evolutionary pressures and how nutrient signaling pathways intersect with mating remains unclear. The nutrient sensor O-GlcNAc transferase, which post-translationally modifies intracellular proteins with a single monosaccharide, is responsive to cellular nutrient status and regulates diverse biological processes. Though essential in most metazoans, O-GlcNAc transferase (ogt-1) is dispensable in Caenorhabditis elegans, allowing genetic analysis of its physiological roles. Compared to control, ogt-1 males had a four-fold reduction in mean offspring, with nearly two thirds producing zero progeny. Interestingly, we found that ogt-1 males transferred sperm less often, and virgin males had reduced sperm count. ogt-1 males were also less likely to engage in mate-searching and mate-response behaviors. Surprisingly, we found normal fertility for males with hypodermal expression of ogt-1 and for ogt-1 strains with catalytic-dead mutations. This suggests OGT-1 serves a non-catalytic function in the hypodermis impacting male fertility and mating behavior. This study builds upon research on the nutrient sensor O-GlcNAc transferase and demonstrates a role it plays in the interplay between the evolutionary drives for reproduction and survival.
Collapse
Affiliation(s)
- Daniel Konzman
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mesgana Dagnachew
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|