1
|
Xu C, Qin D, Lu X, Qi Q, Wu Y, Wang Q, Han Z, Nie X, Jiang Y, Deng D, Xie W, Gao Z, Li L. The subcortical maternal complex safeguards mouse oocyte-to-embryo transition by preventing nuclear entry of SPIN1. Nat Struct Mol Biol 2025:10.1038/s41594-025-01538-0. [PMID: 40247146 DOI: 10.1038/s41594-025-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
How cytoplasmic regulators control nuclear events in mammalian oocytes and early embryos remains largely enigmatic. We previously identified a subcortical maternal complex (SCMC) that specifically resides in the cytoplasm of mammalian oocytes and early embryos but is also involved in nuclear events. Nevertheless, how the cytoplasmic SCMC exerts its role in nuclear processes remains unknown. In this study, we unveil SPIN1, a histone methylation reader, as a novel member of the SCMC. The SCMC component FILIA tightly regulates the expression and cytoplasmic localization of SPIN1 through direct interaction. When the expression of FILIA is decreased because of genetic mutations of SCMC genes, SPIN1 expression is dramatically reduced but the residual SPIN1 translocates into the nucleus. The abnormal nuclear presence of SPIN1 impairs H3K4me3 reprogramming, zygotic genome activation and physiological embryonic development. Inhibiting the interaction between SPIN1 and H3K4me3 partially rescues the abnormal phenotype in FILIA-null embryos. Mechanistically, SPIN1 partially perturbs the demethylation process by competing with KDM5B for binding to H3K4me3. Collectively, our work highlights the complexity of the mammalian SCMC and oocyte-to-embryo transition, revealing an intricate regulatory mechanism that facilitates the smooth progression of this process.
Collapse
Affiliation(s)
- Chengpeng Xu
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xukun Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
| | - Qianqian Qi
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qizhi Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Han
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoqing Nie
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongmei Jiang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dong Deng
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Key Laboratory for Reproductive Medicine of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lei Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Giaccari C, Cecere F, Argenziano L, Pagano A, Riccio A. New insights into oocyte cytoplasmic lattice-associated proteins. Trends Genet 2024; 40:880-890. [PMID: 38955588 DOI: 10.1016/j.tig.2024.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Lucia Argenziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Angela Pagano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy; Institute of Genetics and Biophysics (IGB) 'Adriano Buzzati-Traverso,' Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| |
Collapse
|
3
|
Unoki M, Uemura S, Fujimoto A, Sasaki H. The maternal protein NLRP5 stabilizes UHRF1 in the cytoplasm: implication for the pathogenesis of multilocus imprinting disturbance. Hum Mol Genet 2024; 33:1575-1583. [PMID: 38868925 PMCID: PMC11373322 DOI: 10.1093/hmg/ddae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
We have recently discovered that the so-called subcortical maternal complex (SCMC) proteins composing of cytoplasmic lattices are destabilized in Uhrf1 knockout murine fully grown oocytes (FGOs). Here we report that human UHRF1 interacts with human NLRP5 and OOEP, which are core components of the SCMC. Moreover, NLRP5 and OOEP interact with DPPA3, which is an essential factor for exporting UHRF1 from the nucleus to the cytoplasm in oocytes. We identify that NLRP5, not OOEP, stabilizes UHRF1 protein in the cytoplasm utilizing specifically engineered cell lines mimicking UHRF1 status in oocytes and preimplantation embryos. Further, UHRF1 is destabilized both in the cytoplasm and nucleus of Nlrp5 knockout murine FGOs. Since pathogenic variants of the SCMC components frequently cause multilocus imprinting disturbance and UHRF1 is essential for maintaining CpG methylation of imprinting control regions during preimplantation development, our results suggest possible pathogenesis behind the disease, which has been a long-standing mystery.
Collapse
Affiliation(s)
- Motoko Unoki
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Shuhei Uemura
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Tan J, Li Y, Li X, Zhu X, Liu L, Huang H, Wei J, Wang H, Tian Y, Wang Z, Zhang Z, Zhu B. Pramel15 facilitates zygotic nuclear DNMT1 degradation and DNA demethylation. Nat Commun 2024; 15:7310. [PMID: 39181896 PMCID: PMC11344788 DOI: 10.1038/s41467-024-51614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
In mammals, global passive demethylation contributes to epigenetic reprogramming during early embryonic development. At this stage, the majority of DNA-methyltransferase 1 (DNMT1) protein is excluded from nucleus, which is considered the primary cause. However, whether the remaining nuclear activity of DNMT1 is regulated by additional mechanisms is unclear. Here, we report that nuclear DNMT1 abundance is finetuned through proteasomal degradation in mouse zygotes. We identify a maternal factor, Pramel15, which targets DNMT1 for degradation via Cullin-RING E3 ligases. Loss of Pramel15 elevates DNMT1 levels in the zygote pronuclei, impairs zygotic DNA demethylation, and causes a stochastic gain of DNA methylation in early embryos. Thus, Pramel15 can modulate the residual level of DNMT1 in the nucleus during zygotic DNA replication, thereby ensuring efficient DNA methylation reprogramming in early embryos.
Collapse
Affiliation(s)
- Jiajun Tan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiang Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Liping Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiahua Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hailing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Shiraishi N, Konuma T, Chiba Y, Hokazono S, Nakamura N, Islam MH, Nakanishi M, Nishiyama A, Arita K. Structure of human DPPA3 bound to the UHRF1 PHD finger reveals its functional and structural differences from mouse DPPA3. Commun Biol 2024; 7:746. [PMID: 38898124 PMCID: PMC11187062 DOI: 10.1038/s42003-024-06434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
DNA methylation maintenance is essential for cell fate inheritance. In differentiated cells, this involves orchestrated actions of DNMT1 and UHRF1. In mice, the high-affinity binding of DPPA3 to the UHRF1 PHD finger regulates UHRF1 chromatin dissociation and cytosolic localization, which is required for oocyte maturation and early embryo development. However, the human DPPA3 ortholog functions during these stages remain unclear. Here, we report the structural basis for human DPPA3 binding to the UHRF1 PHD finger. The conserved human DPPA3 85VRT87 motif binds to the acidic surface of UHRF1 PHD finger, whereas mouse DPPA3 binding additionally utilizes two unique α-helices. The binding affinity of human DPPA3 for the UHRF1 PHD finger was weaker than that of mouse DPPA3. Consequently, human DPPA3, unlike mouse DPPA3, failed to inhibit UHRF1 chromatin binding and DNA remethylation in Xenopus egg extracts effectively. Our data provide novel insights into the distinct function and structure of human DPPA3.
Collapse
Affiliation(s)
- Nao Shiraishi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tsuyoshi Konuma
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sayaka Hokazono
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Nao Nakamura
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Md Hadiul Islam
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
6
|
Anvar Z, Jochum MD, Chakchouk I, Sharif M, Demond H, To AK, Kraushaar DC, Wan YW, Andrews S, Kelsey G, Veyver IB. Maternal loss-of-function of Nlrp2 results in failure of epigenetic reprogramming in mouse oocytes. RESEARCH SQUARE 2024:rs.3.rs-4457414. [PMID: 38883732 PMCID: PMC11177987 DOI: 10.21203/rs.3.rs-4457414/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background NLRP2 belongs to the subcortical maternal complex (SCMC) of mammalian oocytes and preimplantation embryos. This multiprotein complex, encoded by maternal-effect genes, plays a pivotal role in the zygote-to-embryo transition, early embryogenesis, and epigenetic (re)programming. The maternal inactivation of genes encoding SCMC proteins has been linked to infertility and subfertility in mice and humans. However, the underlying molecular mechanisms for the diverse functions of the SCMC, particularly how this cytoplasmic structure influences DNA methylation, which is a nuclear process, are not fully understood. Results We undertook joint transcriptome and DNA methylome profiling of pre-ovulatory germinal-vesicle oocytes from Nlrp2-null, heterozygous (Het), and wild-type (WT) female mice. We identified numerous differentially expressed genes (DEGs) in Het and Nlrp2-null when compared to WT oocytes. The genes for several crucial factors involved in oocyte transcriptome modulation and epigenetic reprogramming, such as DNMT1, UHRF1, KDM1B and ZFP57 were overexpressed in Het and Nlrp2-null oocytes. Absence or reduction of Nlrp2, did not alter the distinctive global DNA methylation landscape of oocytes, including the bimodal pattern of the oocyte methylome. Additionally, although the methylation profile of germline differentially methylated regions (gDMRs) of imprinted genes was preserved in oocytes of Het and Nlrp2-null mice, we found altered methylation in oocytes of both genotypes at a small percentage of the oocyte-characteristic hyper- and hypomethylated domains. Through a tiling approach, we identified specific DNA methylation differences between the genotypes, with approximately 1.3% of examined tiles exhibiting differential methylation in Het and Nlrp2-null compared to WT oocytes. Conclusions Surprisingly, considering the well-known correlation between transcription and DNA methylation in developing oocytes, we observed no correlation between gene expression differences and gene-body DNA methylation differences in Nlrp2-null versus WT oocytes or Het versus WT oocytes. We therefore conclude that post-transcriptional changes in the stability of transcripts rather than altered transcription is primarily responsible for transcriptome differences in Nlrp2-null and Het oocytes.
Collapse
|
7
|
Zhang W, Zhang R, Wu L, Zhu C, Zhang C, Xu C, Zhao S, Liu X, Guo T, Lu Y, Gao Z, Yu X, Li L, Chen ZJ, Qin Y, Jiao X. NLRP14 deficiency causes female infertility with oocyte maturation defects and early embryonic arrest by impairing cytoplasmic UHRF1 abundance. Cell Rep 2023; 42:113531. [PMID: 38060382 DOI: 10.1016/j.celrep.2023.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Oocyte maturation is vital to attain full competence required for fertilization and embryogenesis. NLRP14 is preferentially expressed in mammalian oocytes and early embryos. Yet, the role and molecular mechanism of NLRP14 in oocyte maturation and early embryogenesis are poorly understood, and whether NLRP14 deficiency accounts for human infertility is unknown. Here, we found that maternal loss of Nlrp14 resulted in sterility with oocyte maturation defects and early embryonic arrest (EEA). Nlrp14 ablation compromised oocyte competence due to impaired cytoplasmic and nuclear maturation. Importantly, we revealed that NLRP14 maintained cytoplasmic UHRF1 abundance by protecting it from proteasome-dependent degradation and anchoring it from nuclear translocation in the oocyte. Furthermore, we identified compound heterozygous NLRP14 variants in women affected by infertility with EEA, which interrupted the NLRP14-UHRF1 interaction and decreased UHRF1 levels. Our data demonstrate NLRP14 as a cytoplasm-specific regulator of UHRF1 during oocyte maturation, providing insights into genetic diagnosis for female infertility.
Collapse
Affiliation(s)
- Wenzhe Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Rongrong Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Ling Wu
- The Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chendi Zhu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Xinchen Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yueshuang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|