1
|
Arnold L, Yap M, Farrokhian N, Jackson L, Barry M, Ly T, Arjunan P, Kaczorowski-Worthley A, Tews C, Pandey A, Morrison A, Washburn MP, Standing D, Gomez JP, Yellapu NK, Johnson D, Li L, Umar S, Anant S, Thomas SM. DCLK1-mediated regulation of invadopodia dynamics and matrix metalloproteinase trafficking drives invasive progression in head and neck squamous cell carcinoma. Mol Cancer 2025; 24:50. [PMID: 39994636 PMCID: PMC11853957 DOI: 10.1186/s12943-025-02264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND HNSCC presents a significant health challenge due to its high mortality resulting from treatment resistance and locoregional invasion into critical structures in the head and neck region. Understanding the invasion mechanisms of HNSCC has the potential to guide targeted therapies, improving patient survival. Previously, we demonstrated the involvement of doublecortin like kinase 1 (DCLK1) in regulating HNSCC cell invasion. Here, we investigated the hypothesis that DCLK1 modulates proteins within invadopodia, specialized subcellular protrusions that secrete matrix metalloproteinases to degrade the ECM. METHODS We employed tandem mass tag (TMT)-based proteomics to identify the role of DCLK1 in regulating proteins involved in HNSCC invasion and validated the findings using immunoblotting. The Cancer Genome Atlas (TCGA) database was interrogated to correlate DCLK1 expression with tumor stage, grade, and invasion-associated proteins. In vitro invasion was assessed using a Boyden chamber assay, and immunohistochemistry on patient samples determined DCLK1's distribution within tumors. Gelatin invadopodia assay was used to establish DCLK1 localization to invadopodia related gelatin degradation. Super-resolution confocal microscopy demonstrated colocalization of DCLK1 with invadopodia markers and MMP trafficking proteins. ECM degradation by MMPs in HNSCC cells with wild-type and knockdown DCLK1 was evaluated using a dye-quenched tracer, while gel zymography and MMP array identified secreted proteases. Proximity ligation assay (PLA) and co-immunoprecipitation assays were used to confirm interactions between DCLK1, MMP9, KIF16B, and RAB40B. RESULTS Proteomic analysis demonstrate DCLK1's role in regulating proteins involved in cytoskeletal and ECM remodeling. Clinically, rising DCLK1 levels correlate with higher histological grade and lymph node metastasis, with heightened expression observed at the leading edge of HNSCC patient tissue. DCLK1 is localized with markers of mature invadopodia including TKS4, TKS5, cortactin, and MT1-MMP. Knockdown of DCLK1 led to reductions in invadopodia numbers and decreased in vitro invasion and ECM degradation. MMP9 colocalizes with DCLK1 within invadopodia structures and its secretion is disrupted by DCLK1 knockdown. Further, PLA and co-immunoprecipitations studies demonstrate DLCK1 complexes with KIF16B and RAB40B enabling trafficking of degradative MMP9 cargo along the invadopodia to degrade local ECM. CONCLUSION This work unveils a novel function of DCLK1 in regulating KIF16B and RAB40B to traffic matrix degrading MMP9 cargo to the distal end of the invadopodia facilitating HNSCC invasion.
Collapse
Affiliation(s)
- Levi Arnold
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
- Department of Cancer Biology, Medical Center, University of Kansas, Kansas, KS, 66160, USA
| | - Marrion Yap
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
| | - Nathan Farrokhian
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
| | - Laura Jackson
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
| | - Michael Barry
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
| | - Thuc Ly
- Department of Cancer Biology, Medical Center, University of Kansas, Kansas, KS, 66160, USA
| | - Pachiappan Arjunan
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
| | - Angela Kaczorowski-Worthley
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
| | - Carter Tews
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
| | - Avisha Pandey
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
| | - Austin Morrison
- Department of Cancer Biology, Medical Center, University of Kansas, Kansas, KS, 66160, USA
| | - Michael P Washburn
- Department of Cancer Biology, Medical Center, University of Kansas, Kansas, KS, 66160, USA
| | - David Standing
- Department of Cancer Biology, Medical Center, University of Kansas, Kansas, KS, 66160, USA
| | - Juan P Gomez
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, Medical Center, University of Kansas, Kansas, KS, 66160, USA
| | - David Johnson
- Computational Chemical Biology, University of Kansas, Lawrence, KS, 66047, USA
| | | | - Shahid Umar
- Department of Surgery, Medical Center, University of Kansas, Kansas, KS, 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, Medical Center, University of Kansas, Kansas, KS, 66160, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, Rainbow Blvd, University of Kansas Medical Center, 3901aq, Wahl Hall East 4031, Kansas, KS, 66160, USA.
- Department of Cancer Biology, Medical Center, University of Kansas, Kansas, KS, 66160, USA.
| |
Collapse
|
2
|
Kelly H, Inada M, Itoh Y. The Diverse Pathways for Cell Surface MT1-MMP Localization in Migratory Cells. Cells 2025; 14:209. [PMID: 39937000 PMCID: PMC11816416 DOI: 10.3390/cells14030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Controlled cell migration is an essential biological process in health, while uncontrolled cell migration contributes to disease progression. For cells to migrate through tissue, they must first degrade the extracellular matrix (ECM), which acts as a physical barrier to cell migration. A type I transmembrane-type matrix metalloproteinase, MT1-MMP, is the key enzyme involved in this process. It has been extensively shown that MT1-MMP promotes the migration of different cell types in tissue, including fibroblasts, epithelial cells, endothelial cells, macrophages, mesenchymal stem cells, and cancer cells. MT1-MMP is tightly regulated at different levels, and its localization to leading-edge membrane structures is an essential process for MT1-MMP to promote cellular invasion. Different cells display different motility-associated membrane structures, which contribute to their invasive ability, and there are diverse mechanisms of MT1-MMP localization to these structures. In this article, we will discuss the current understanding of MT1-MMP regulation, in particular, localization mechanisms to these different motility-associated membrane structures.
Collapse
Affiliation(s)
- Hannah Kelly
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Nturubika BDD, Logan J, Johnson IRD, Moore C, Li KL, Tang J, Lam G, Parkinson-Lawrence E, Williams DB, Chakiris J, Hindes M, Brooks RD, Miles MA, Selemidis S, Gregory P, Weigert R, Butler L, Ward MP, Waugh DJJ, O’Leary JJ, Brooks DA. Components of the Endosome-Lysosome Vesicular Machinery as Drivers of the Metastatic Cascade in Prostate Cancer. Cancers (Basel) 2024; 17:43. [PMID: 39796673 PMCID: PMC11718918 DOI: 10.3390/cancers17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer remains a significant global health concern, with over 1.4 million new cases diagnosed and more than 330,000 deaths each year. The primary clinical challenge that contributes to poor patient outcomes involves the failure to accurately predict and treat at the onset of metastasis, which remains an incurable stage of the disease. This review discusses the emerging paradigm that prostate cancer metastasis is driven by a dysregulation of critical molecular machinery that regulates endosome-lysosome homeostasis. Endosome and lysosome compartments have crucial roles in maintaining normal cellular function but are also involved in many hallmarks of cancer pathogenesis, including inflammation, immune response, nutrient sensing, metabolism, proliferation, signalling, and migration. Here we discuss new insight into how alterations in the complex network of trafficking machinery, responsible for the microtubule-based transport of endosomes and lysosomes, may be involved in prostate cancer progression. A better understanding of endosome-lysosome dynamics may facilitate the discovery of novel strategies to detect and manage prostate cancer metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- Bukuru Dieu-Donne Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jessica Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ian R. D. Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jingying Tang
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Giang Lam
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Emma Parkinson-Lawrence
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Desmond B. Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - James Chakiris
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Madison Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Philip Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa Butler
- South Australian ImmunoGENomics Cancer Institute, Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5000, Australia;
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mark P. Ward
- Department of Pathology, The Coombe Women and Infants University Hospital, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - David J. J. Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - Douglas A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| |
Collapse
|
4
|
Itoh Y. Vesicle transport of matrix metalloproteinases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:361-380. [PMID: 38960480 DOI: 10.1016/bs.apcsb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Multicellular organisms consist of cells and extracellular matrix (ECM). ECM creates a cellular microenvironment, and cells locally degrade the ECM according to their cellular activity. A major group of enzymes that modify ECM belongs to matrix metalloproteinases (MMPs) and play major roles in various pathophysiological events. ECM degradation by MMPs does not occur in all cellular surroundings but only where it is necessary, and cells achieve this by directionally secreting these proteolytic enzymes. Recent studies have indicated that such enzyme secretion is achieved by targeted vesicle transport along the microtubules, and several kinesin superfamily proteins (KIFs) have been identified as responsible motor proteins involved in the processes. This chapter discusses recent findings of the vesicle transport of MMPs and their roles.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Arnold L, Yap M, Jackson L, Barry M, Ly T, Morrison A, Gomez JP, Washburn MP, Standing D, Yellapu NK, Li L, Umar S, Anant S, Thomas SM. DCLK1-Mediated Regulation of Invadopodia Dynamics and Matrix Metalloproteinase Trafficking Drives Invasive Progression in Head and Neck Squamous Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588339. [PMID: 38645056 PMCID: PMC11030349 DOI: 10.1101/2024.04.06.588339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major health concern due to its high mortality from poor treatment responses and locoregional tumor invasion into life sustaining structures in the head and neck. A deeper comprehension of HNSCC invasion mechanisms holds the potential to inform targeted therapies that may enhance patient survival. We previously reported that doublecortin like kinase 1 (DCLK1) regulates invasion of HNSCC cells. Here, we tested the hypothesis that DCLK1 regulates proteins within invadopodia to facilitate HNSCC invasion. Invadopodia are specialized subcellular protrusions secreting matrix metalloproteinases that degrade the extracellular matrix (ECM). Through a comprehensive proteome analysis comparing DCLK1 control and shDCLK1 conditions, our findings reveal that DCLK1 plays a pivotal role in regulating proteins that orchestrate cytoskeletal and ECM remodeling, contributing to cell invasion. Further, we demonstrate in TCGA datasets that DCLK1 levels correlate with increasing histological grade and lymph node metastasis. We identified higher expression of DCLK1 in the leading edge of HNSCC tissue. Knockdown of DCLK1 in HNSCC reduced the number of invadopodia, cell adhesion and colony formation. Using super resolution microscopy, we demonstrate localization of DCLK1 in invadopodia and colocalization with mature invadopodia markers TKS4, TKS5, cortactin and MT1-MMP. We carried out phosphoproteomics and validated using immunofluorescence and proximity ligation assays, the interaction between DCLK1 and motor protein KIF16B. Pharmacological inhibition or knockdown of DCLK1 reduced interaction with KIF16B, secretion of MMPs, and cell invasion. This research unveils a novel function of DCLK1 within invadopodia to regulate the trafficking of matrix degrading cargo. The work highlights the impact of targeting DCLK1 to inhibit locoregional invasion, a life-threatening attribute of HNSCC.
Collapse
Affiliation(s)
- Levi Arnold
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Marion Yap
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Laura Jackson
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael Barry
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Austin Morrison
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Juan P. Gomez
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael P. Washburn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Linheng Li
- Stowers Institute, Kansas City, Kansas, USA
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
6
|
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases that belong to the group of endopeptidases or matrixins. They are able to cleave a plethora of substrates, including components of the extracellular matrix and cell-surface-associated proteins, as well as intracellular targets. Accordingly, MMPs play key roles in a variety of physiological and pathological processes, such as tissue homeostasis and cancer cell invasion. MMP activity is exquisitely regulated at several levels, including pro-domain removal, association with inhibitors, intracellular trafficking and transport via extracellular vesicles. Moreover, the regulation of MMP activity is currently being rediscovered for the development of respective therapies for the treatment of cancer, as well as infectious, inflammatory and neurological diseases. In this Cell Science at a Glance article and the accompanying poster, we present an overview of the current knowledge regarding the regulation of MMP activity, the intra- and extra-cellular trafficking pathways of these enzymes and their diverse groups of target proteins, as well as their impact on health and disease.
Collapse
Affiliation(s)
- Sven Hey
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|