1
|
Wang Y, Yildirim A, Boninsegna L, Christian V, Kang SHL, Zhou XJ, Alber F. 3D genome organization shapes DNA damage susceptibility to platinum-based drugs. Nucleic Acids Res 2025; 53:gkaf315. [PMID: 40433977 DOI: 10.1093/nar/gkaf315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/31/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025] Open
Abstract
Platinum (Pt) drugs are widely utilized in cancer chemotherapy. Although cytotoxic and resistance mechanisms of Pt drugs have been thoroughly explored, it remains elusive what factors affect the receptiveness of DNA to drug-induced damage in nuclei. Here, we demonstrate that nuclear locations of chromatin play a key role in Pt drug-induced DNA damage susceptibility in vivo. By integrating data from damage-seq experiments with 3D genome structure information, we show that nuclear locations of chromatin relative to specific nuclear bodies and compartments explain patterns of cisplatin DNA damage susceptibility. This aligns with observations of cisplatin enrichment in biomolecular condensates at certain nuclear bodies. Finally, 3D structure mapping of DNA damage reveals characteristic differences between nuclear distributions of oxaliplatin-induced DNA damage in drug resistant versus sensitive cells. DNA damage increases in gene-poor chromatin at the nuclear periphery, while it decreases in gene-rich regions located at nuclear speckles. This suggests a strategic redistribution of Pt drug-induced damage in nuclei during chemoresistance development.
Collapse
Affiliation(s)
- Ye Wang
- Institute of Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles CA90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, 520 Boyer Hall, Los Angeles CA90095, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles CA90095, United States
| | - Asli Yildirim
- Institute of Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles CA90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, 520 Boyer Hall, Los Angeles CA90095, United States
| | - Lorenzo Boninsegna
- Institute of Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles CA90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, 520 Boyer Hall, Los Angeles CA90095, United States
| | - Valentina Christian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles CA90095, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles CA90095, United States
| | - Xianghong Jasmine Zhou
- Institute of Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles CA90095, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles CA90095, United States
| | - Frank Alber
- Institute of Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles CA90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, 520 Boyer Hall, Los Angeles CA90095, United States
| |
Collapse
|
2
|
Heilbrun EE, Tseitline D, Wasserman H, Kirshenbaum A, Cohen Y, Gordan R, Adar S. The epigenetic landscape shapes smoking-induced mutagenesis by modulating DNA damage susceptibility and repair efficiency. Nucleic Acids Res 2025; 53:gkaf048. [PMID: 39933696 PMCID: PMC11811737 DOI: 10.1093/nar/gkaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer sequencing efforts have uncovered mutational signatures that are attributed to exposure to the cigarette smoke carcinogen benzo[a]pyrene. Benzo[a]pyrene metabolizes in cells to benzo[a]pyrene diol epoxide (BPDE) and reacts with guanine nucleotides to form bulky BPDE adducts. These DNA adducts block transcription and replication, compromising cell function and survival, and are repaired in human cells by the nucleotide excision repair pathway. Here, we applied high-resolution genomic assays to measure BPDE-induced damage formation and mutagenesis in human cells. We integrated the new damage and mutagenesis data with previous repair, DNA methylation, RNA expression, DNA replication, and chromatin component measurements in the same cell lines, along with lung cancer mutagenesis data. BPDE damage formation is significantly enhanced by DNA methylation and in accessible chromatin regions, including transcribed and early-replicating regions. Binding of transcription factors is associated primarily with reduced, but also enhanced damage formation, depending on the factor. While DNA methylation does not appear to influence repair efficiency, this repair was significantly elevated in accessible chromatin regions, which accumulated fewer mutations. Thus, when damage and repair drive mutagenesis in opposing directions, the final mutational patterns appear to be dictated by the efficiency of repair rather than the frequency of underlying damages.
Collapse
Affiliation(s)
- Elisheva E Heilbrun
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dana Tseitline
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Wasserman
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, United States
| | - Ayala Kirshenbaum
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yuval Cohen
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Raluca Gordan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, United States
- Department of Computer Science, Duke University, Durham, NC 27708, United States
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
3
|
Guneri-Sozeri PY, Adebali O. Transcription factors, nucleotide excision repair, and cancer: A review of molecular interplay. Int J Biochem Cell Biol 2025; 179:106724. [PMID: 39672502 DOI: 10.1016/j.biocel.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Bulky DNA adducts are mostly formed by external factors such as UV irradiation, smoking or treatment with DNA crosslinking agents. If such DNA adducts are not removed by nucleotide excision repair, they can lead to formation of driver mutations that contribute to cancer formation. Transcription factors (TFs) may critically affect both DNA adduct formation and repair efficiency at the binding site to DNA. For example, "hotspot" mutations in melanoma coincide with UV-induced accumulated cyclobutane pyrimidine dimer (CPD) adducts and/or inhibited repair at the binding sites of some TFs. Similarly, anticancer treatment with DNA cross-linkers may additionally generate DNA adducts leading to secondary mutations and the formation of malignant subclones. In addition, some TFs are overexpressed in response to UV irradiation or chemotherapeutic treatment, activating oncogenic and anti-oncogenic pathways independently of nucleotide excision repair itself. This review focuses on the interplay between TFs and nucleotide excision repair during cancer development and progression.
Collapse
Affiliation(s)
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Türkiye.
| |
Collapse
|
4
|
Wu Y, Adeel M, Xia D, Sancar A, Li W. Nucleotide excision repair of aflatoxin-induced DNA damage within the 3D human genome organization. Nucleic Acids Res 2024; 52:11704-11719. [PMID: 39258558 PMCID: PMC11514448 DOI: 10.1093/nar/gkae755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Aflatoxin B1 (AFB1), a potent mycotoxin, is one of the environmental risk factors that cause liver cancer. In the liver, the bioactivated AFB1 intercalates into the DNA double helix to form a bulky DNA adduct which will lead to mutation if left unrepaired. Here, we adapted the tXR-seq method to measure the nucleotide excision repair of AFB1-induced DNA adducts at single-nucleotide resolution on a genome-wide scale, and compared it with repair data obtained from conventional UV-damage XR-seq. Our results showed that transcription-coupled repair plays a major role in the damage removal process. We further analyzed the distribution of nucleotide excision repair sites for AFB1-induced DNA adducts within the 3D human genome organization. Our analysis revealed a heterogeneous AFB1-dG repair across four different organization levels, including chromosome territories, A/B compartments, TADs, and chromatin loops. We found that chromosomes positioned closer to the nuclear center and regions within A compartments have higher levels of nucleotide excision repair. Notably, we observed high repair activity around both TAD boundaries and loop anchors. These findings provide insights into the complex interplay between AFB1-induced DNA damage repair, transcription, and 3D genome organization, shedding light on the mechanisms underlying AFB1-induced mutagenesis.
Collapse
Affiliation(s)
- Yiran Wu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Muhammad Muzammal Adeel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Dian Xia
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Wentao Li
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Yao YM, Miodownik I, O’Hagan MP, Jbara M, Afek A. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Transcription 2024; 15:114-138. [PMID: 39033307 PMCID: PMC11810102 DOI: 10.1080/21541264.2024.2379161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.
Collapse
Affiliation(s)
- Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irina Miodownik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael P. O’Hagan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Nicholson MD, Anderson CJ, Odom DT, Aitken SJ, Taylor MS. DNA lesion bypass and the stochastic dynamics of transcription-coupled repair. Proc Natl Acad Sci U S A 2024; 121:e2403871121. [PMID: 38717857 PMCID: PMC11098089 DOI: 10.1073/pnas.2403871121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.
Collapse
Affiliation(s)
- Michael D. Nicholson
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| | - Craig J. Anderson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| | - Duncan T. Odom
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center, Heidelberg69120, Germany
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
| | - Sarah J. Aitken
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Medical Research Council Toxicology Unit, University of Cambridge, CambridgeCB2 1QR, United Kingdom
- Department of Histopathology, Cambridge University Hospitals National Health Service Foundation Trust, CambridgeCB2 0QQ, United Kingdom
| | - Martin S. Taylor
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, United Kingdom
| |
Collapse
|
7
|
Soheili-Nezhad S, Ibáñez-Solé O, Izeta A, Hoeijmakers JHJ, Stoeger T. Time is ticking faster for long genes in aging. Trends Genet 2024; 40:299-312. [PMID: 38519330 PMCID: PMC11003850 DOI: 10.1016/j.tig.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Olga Ibáñez-Solé
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ander Izeta
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Tecnun-University of Navarra, 20018 Donostia-San Sebastian, Spain.
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany; Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands.
| | - Thomas Stoeger
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA; Potocsnak Longevity Institute, Northwestern University, Chicago, IL, USA; Simpson Querrey Lung Institute for Translational Science, Chicago, IL, USA.
| |
Collapse
|