1
|
Goda M, Shribak M, Ikeda Z, Okada N, Tani T, Goshima G, Oldenbourg R, Kimura A. Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the Caenorhabditis elegans embryo. Proc Natl Acad Sci U S A 2024; 121:e2402759121. [PMID: 39413133 PMCID: PMC11513977 DOI: 10.1073/pnas.2402759121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/21/2024] [Indexed: 10/18/2024] Open
Abstract
Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a method to apply forces to the nucleus of living Caenorhabditis elegans embryos to measure the force generated inside the cell. We used a centrifuge polarizing microscope to apply centrifugal force and orientation-independent differential interference contrast microscopy to characterize the mass density of the nucleus and cytoplasm. The cellular forces moving the nucleus toward the cell center increased linearly at ~12 pN/μm depending on the distance from the center. The frictional coefficient was ~980 pN s/μm. The measured values were smaller than the previously reported estimates for sea urchin embryos. The forces were consistent with the centrosome-organelle mutual pulling model for nuclear centration. The frictional coefficient was reduced when microtubules were shorter or detached from nuclei in mutant embryos, demonstrating the contribution of astral microtubules. Finally, the frictional coefficient was higher than a theoretical estimate, indicating the contribution of uncharacterized properties of the cytoplasm.
Collapse
Affiliation(s)
- Makoto Goda
- Marine Biological Laboratory, Woods Hole, MA02543
- Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu431-3192, Japan
- Nagoya University, Nagoya464-8602, Japan
| | | | - Zenki Ikeda
- National Institute of Genetics, Mishima411-8540, Japan
- Genetics Program, Sokendai (Graduate University for Advanced Studies), Mishima411-8540, Japan
| | | | - Tomomi Tani
- Marine Biological Laboratory, Woods Hole, MA02543
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda563-8577, Japan
| | - Gohta Goshima
- Marine Biological Laboratory, Woods Hole, MA02543
- Nagoya University, Nagoya464-8602, Japan
| | | | - Akatsuki Kimura
- Marine Biological Laboratory, Woods Hole, MA02543
- National Institute of Genetics, Mishima411-8540, Japan
- Genetics Program, Sokendai (Graduate University for Advanced Studies), Mishima411-8540, Japan
| |
Collapse
|
2
|
Goda M, Shribak M, Ikeda Z, Okada N, Tani T, Goshima G, Oldenbourg R, Kimura A. Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the Caenorhabditis elegans embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574024. [PMID: 38260704 PMCID: PMC10802357 DOI: 10.1101/2024.01.03.574024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a novel method to apply forces to the nucleus of living, wild-type Caenorhabditis elegans embryos to measure the force generated inside the cell. We utilized a centrifuge polarizing microscope (CPM) to apply centrifugal force and orientation-independent differential interference contrast (OI-DIC) microscopy to characterize the mass density of the nucleus and cytoplasm. The cellular forces moving the nucleus toward the cell center increased linearly at ~14 pN/μm depending on the distance from the center. The frictional coefficient was ~1,100 pN s/μm. The measured values were smaller than previously reported estimates for sea urchin embryos. The forces were consistent with the centrosome-organelle mutual pulling model for nuclear centration. Frictional coefficient was reduced when microtubules were shorter or detached from nuclei in mutant embryos, demonstrating the contribution of astral microtubules. Finally, the frictional coefficient was higher than a theoretical estimate, indicating the contribution of uncharacterized properties of the cytoplasm.
Collapse
Affiliation(s)
- Makoto Goda
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Nagoya University, Nagoya 464-8602, Japan
| | - Michael Shribak
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Zenki Ikeda
- National Institute of Genetics, Mishima 411-8540, Japan
- Sokendai (Graduate University for Advanced Studies) Mishima, Mishima 411-8540, Japan
| | | | - Tomomi Tani
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda 563-8577, Japan
| | - Gohta Goshima
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- Nagoya University, Nagoya 464-8602, Japan
| | | | - Akatsuki Kimura
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- National Institute of Genetics, Mishima 411-8540, Japan
- Sokendai (Graduate University for Advanced Studies) Mishima, Mishima 411-8540, Japan
| |
Collapse
|