1
|
Li X, Mao X, Tao M, Liang F, Tian X, Fan J, Wang X, Yu T, Ao Q. Enhancing neuroinduction activity of PLCL-based nerve conduits through native epineurium integration. BIOMATERIALS ADVANCES 2024; 159:213803. [PMID: 38447384 DOI: 10.1016/j.bioadv.2024.213803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Autologous nerve grafts have been considered the gold standard for peripheral nerve grafts. However, due to drawbacks such as functional loss in the donor area and a shortage of donor sources, nerve conduits are increasingly being considered as an alternative approach. Polymer materials have been widely studied as nerve repair materials due to their excellent processing performance. However, their limited biocompatibility has restricted further clinical applications. The epineurium is a natural extra-neural wrapping structure. After undergoing decellularization, the epineurium not only reduces immune rejection but also retains certain bioactive components. In this study, decellularized epineurium (DEP) derived from the sciatic nerve of mammals was prepared, and a bilayer nerve conduit was created by electrospinning a poly (l-lactide-co-ε-caprolactone) (PLCL) membrane layer onto the outer surface of the DEP. Components of the DEP were examined; the physical properties and biosafety of the bilayer nerve conduit were evaluated; and the functionality of the nerve conduit was evaluated in rats. The results demonstrate that the developed bilayer nerve conduit exhibits excellent biocompatibility and mechanical properties. Furthermore, this bilayer nerve conduit shows significantly superior therapeutic effects for sciatic nerve defects in rats compared to the pure PLCL nerve conduit. In conclusion, this research provides a novel strategy for the design of nerve regeneration materials and holds promising potential for further clinical translation.
Collapse
Affiliation(s)
- Xiao Li
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Meihan Tao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Fang Liang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Jun Fan
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China..
| |
Collapse
|
2
|
Ma Y, Zhang R, Mao X, Li X, Li T, Liang F, He J, Wen L, Wang W, Li X, Zhang Y, Yu H, Lu B, Yu T, Ao Q. Preparation of PLCL/ECM nerve conduits by electrostatic spinning technique and evaluation in vitroand in vivo. J Neural Eng 2024; 21:026028. [PMID: 38572924 DOI: 10.1088/1741-2552/ad3851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Objective. Artificial nerve scaffolds composed of polymers have attracted great attention as an alternative for autologous nerve grafts recently. Due to their poor bioactivity, satisfactory nerve repair could not be achieved. To solve this problem, we introduced extracellular matrix (ECM) to optimize the materials.Approach.In this study, the ECM extracted from porcine nerves was mixed with Poly(L-Lactide-co-ϵ-caprolactone) (PLCL), and the innovative PLCL/ECM nerve repair conduits were prepared by electrostatic spinning technology. The novel conduits were characterized by scanning electron microscopy (SEM), tensile properties, and suture retention strength test for micromorphology and mechanical strength. The biosafety and biocompatibility of PLCL/ECM nerve conduits were evaluated by cytotoxicity assay with Mouse fibroblast cells and cell adhesion assay with RSC 96 cells, and the effects of PLCL/ECM nerve conduits on the gene expression in Schwann cells was analyzed by real-time polymerase chain reaction (RT-PCR). Moreover, a 10 mm rat (Male Wistar rat) sciatic defect was bridged with a PLCL/ECM nerve conduit, and nerve regeneration was evaluated by walking track, mid-shank circumference, electrophysiology, and histomorphology analyses.Main results.The results showed that PLCL/ECM conduits have similar microstructure and mechanical strength compared with PLCL conduits. The cytotoxicity assay demonstrates better biosafety and biocompatibility of PLCL/ECM nerve conduits. And the cell adhesion assay further verifies that the addition of ECM is more beneficial to cell adhesion and proliferation. RT-PCR showed that the PLCL/ECM nerve conduit was more favorable to the gene expression of functional proteins of Schwann cells. Thein vivoresults indicated that PLCL/ECM nerve conduits possess excellent biocompatibility and exhibit a superior capacity to promote peripheral nerve repair.Significance.The addition of ECM significantly improved the biocompatibility and bioactivity of PLCL, while the PLCL/ECM nerve conduit gained the appropriate mechanical strength from PLCL, which has great potential for clinical repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Yizhan Ma
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Runze Zhang
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Xiaoyan Mao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- China (Nanchang) Intellectual Property Protection Center, Nanchang, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Fang Liang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jing He
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Lili Wen
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Weizuo Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Xiao Li
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Yanhui Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Honghao Yu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Binhan Lu
- School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People's Republic of China
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|