1
|
dos Santos PVBE, Brasil ADA, Milone LTV, Chalfun G, Saide SCADO, Salú MDS, de Oliveira MBG, Robaina JR, Lima-Setta F, Rodrigues-Santos G, de Magalhães-Barbosa MC, da Cunha AJLA, Prata-Barbosa A. Impact of prematurity on LINE-1 promoter methylation. Epigenomics 2024; 16:1253-1264. [PMID: 39297700 PMCID: PMC11486321 DOI: 10.1080/17501911.2024.2397329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Aim: Promoter methylation of LINE-1 may be affected by prematurity, but there is little evidence in the literature.Materials & methods: Blood from premature and full-term neonates on days 0, 5, 30 and 90 was analyzed for DNA methylation percentage in a promoter region of the LINE-1, after bisulfite conversion and pyrosequencing.Results: Premature infants, as a whole, showed significantly lower methylation percentage at birth, but this difference diminished over time. However, the subgroup of extremely premature (<28 weeks gestational age) had higher methylation percentages, similar to full-term newborns.Conclusion: This research underscores the critical role of prematurity on the methylation pattern of LINE-1. These findings underline the complexity of epigenetic regulation in prematurity and emphasize the need for further studies.
Collapse
Affiliation(s)
- Paulo Victor Barbosa Eleutério dos Santos
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Martagão Gesteira Institute of Childcare & Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Aline de Araújo Brasil
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Leo Travassos Vieira Milone
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Genetics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Georgia Chalfun
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Department of Neonatology, Maternity School, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil
| | - Stephanie Cristina Alves de Oliveira Saide
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Genetics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Margarida dos Santos Salú
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | | | - Fernanda Lima-Setta
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Gustavo Rodrigues-Santos
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | - Antônio José Ledo Alves da Cunha
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Martagão Gesteira Institute of Childcare & Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Martagão Gesteira Institute of Childcare & Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Castellanos FX, Moreno-Santillán D, Hughes GM, Paulat NS, Sipperly N, Brown AM, Martin KR, Poterewicz GM, Lim MCW, Russell AL, Moore MS, Johnson MG, Corthals AP, Ray DA, Dávalos LM. The evolution of antimicrobial peptides in Chiroptera. Front Immunol 2023; 14:1250229. [PMID: 37822944 PMCID: PMC10562630 DOI: 10.3389/fimmu.2023.1250229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
High viral tolerance coupled with an extraordinary regulation of the immune response makes bats a great model to study host-pathogen evolution. Although many immune-related gene gains and losses have been previously reported in bats, important gene families such as antimicrobial peptides (AMPs) remain understudied. We built an exhaustive bioinformatic pipeline targeting the major gene families of defensins and cathelicidins to explore AMP diversity and analyze their evolution and distribution across six bat families. A combination of manual and automated procedures identified 29 AMP families across queried species, with α-, β-defensins, and cathelicidins representing around 10% of AMP diversity. Gene duplications were inferred in both α-defensins, which were absent in five species, and three β-defensin gene subfamilies, but cathelicidins did not show significant shifts in gene family size and were absent in Anoura caudifer and the pteropodids. Based on lineage-specific gains and losses, we propose diet and diet-related microbiome evolution may determine the evolution of α- and β-defensins gene families and subfamilies. These results highlight the importance of building species-specific libraries for genome annotation in non-model organisms and shed light on possible drivers responsible for the rapid evolution of AMPs. By focusing on these understudied defenses, we provide a robust framework for explaining bat responses to pathogens.
Collapse
Affiliation(s)
| | - Diana Moreno-Santillán
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nicolette Sipperly
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Alexis M. Brown
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Katherine R. Martin
- Department of Biology, University of Central Florida, Orlando, FL, United States
| | - Gregory M. Poterewicz
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Marisa C. W. Lim
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Amy L. Russell
- Department of Biology, Grand Valley State University, Allendale, MI, United States
| | - Marianne S. Moore
- College of Science and Mathematics, University of the Virgin Islands, St. Thomas, VI, United States
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Angelique P. Corthals
- Department of Sciences, John Jay College of Criminal Justice, New York, NY, United States
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Liliana M. Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
3
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
4
|
Chen D, Cremona MA, Qi Z, Mitra RD, Chiaromonte F, Makova KD. Human L1 Transposition Dynamics Unraveled with Functional Data Analysis. Mol Biol Evol 2021; 37:3576-3600. [PMID: 32722770 DOI: 10.1093/molbev/msaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.
Collapse
Affiliation(s)
- Di Chen
- Intercollege Graduate Degree Program in Genetics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA.,Department of Operations and Decision Systems, Université Laval, Québec, Canada
| | - Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA.,EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.,The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA
| | - Kateryna D Makova
- The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
5
|
DNA methylation patterns of LINE-1 and Alu for pre-symptomatic dementia in type 2 diabetes. PLoS One 2020; 15:e0234578. [PMID: 32525932 PMCID: PMC7289438 DOI: 10.1371/journal.pone.0234578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The identification of early markers of dementia is important for higher-risk populations such as those with type 2 diabetes (T2D). Retrotransposons, including long interspersed nuclear element 1 (LINE-1) and Alu, comprise ~40% of the human genome. Although dysregulation of these retrotransposons can induce aberrant gene regulation and genomic instability, their role in the development of pre-symptomatic dementia (PSD) among T2D patients is unknown. Here, we examined locus-specific changes in LINE-1 and Alu methylation in PSD and the potential to offset these changes via supplementation with folate and vitamin B12. We interrogated DNA methylation patterns corresponding to 22,352 probes for LINE-1 and Alu elements using publicly-available Illumina Infinium 450K methylation datasets from i) an 18-month prospective study in 28 T2D patients (GSE62003) and ii) an intervention study in which 44 individuals were supplemented with folic acid (400 μg/day) and vitamin B12 (500 μg/day) over two years (GSE74548). We identified 714 differentially methylated positions (DMP) mapping to retrotransposons in T2D patients who developed PSD in comparison to those who did not (PFDR < 0.05), comprised of 2.4% (228 probes) of all LINE-1 probes and 3.8% (486 probes) of all Alu probes. These loci were enriched in genes with functions related to Alzheimer's disease and cognitive decline, including GNB5, GNG7 and PKN3 (p < 0.05). In older individuals supplemented with folate/vitamin B12, 85 (11.9%) PSD retrotransposon loci showed significant changes in methylation (p < 0.05): participants with the MTHFR CC genotype predominantly showed hypermethylation at these loci, while hypomethylation was observed more frequently in those with the TT genotype. In T2D patients, LINE-1 and Alu elements are differentially methylated in PSD in a locus-specific manner and may offer clinical utility in monitoring risk of dementia. Further work is required to examine the potential for dietary supplementation in lowering the risk of PSD.
Collapse
|
6
|
Liu Y, Albrecht E, Schering L, Kuehn C, Yang R, Zhao Z, Maak S. Agouti Signaling Protein and Its Receptors as Potential Molecular Markers for Intramuscular and Body Fat Deposition in Cattle. Front Physiol 2018; 9:172. [PMID: 29559925 PMCID: PMC5845533 DOI: 10.3389/fphys.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Transcriptome analyses of bovine muscle tissue differing in intramuscular fat (IMF) content identified agouti signaling protein (ASIP) as a promising candidate gene for fat deposition. The protein is secreted from adipocytes and may serve as a signaling molecule in cross-talk between adipocytes and muscle fibers or other cells. Known receptors for ASIP are the melanocortin receptors (e.g., MC4R) and attractin (ATRN). The present study was conducted to determine relationships between the expression of ASIP and its receptors in different bovine tissues with fat deposition. Adipose tissues, liver, and longissimus muscle tissue were collected from 246 F2-generation bulls (Charolais × Holstein cross) and gene expression was measured with RT-qPCR. During analysis of subcutaneous fat (SCF) of all bulls, 17 animals were identified with a transposon-derived transcript (Exon2C) inserted in the ASIP gene and dramatically increased ASIP mRNA levels. Significant correlations between normalized mRNA values of SCF and phenotypic traits related to fat deposition were found in bulls without Exon2C. Three retrospectively assigned groups [Exon2C, n = 17; high carcass fat (HCF), n = 20; low carcass fat (LCF), n = 20] were further analyzed to verify expression differences and elucidate molecular reasons. Expression of ASIP could be detected in isolated muscle fibers and adipocytes of Exon2C bulls in contrast to HCF and LCF bulls, indicating ectopic ASIP expression if the transposon is present. Among adipose tissues, highest ASIP mRNA levels were measured in SCF with significantly higher values in HCF compared to LCF bulls (1.6-fold, P < 0.05). However, the protein abundance was below the detection limit in all bulls. Potential ASIP receptors were detected in most investigated tissues. The expression of MC4R was higher and of ATRN was lower in several tissues of LCF compared to HCF bulls, whereas MC1R was not differentially expressed. Bulls of the Exon2C group had lower ATRN mRNA values than HCF and LCF bulls in perirenal fat (PF), but higher (P < 0.05) values in muscle. Receptors were also expressed in tissues where ASIP mRNA was not detected. Consequently, those tissues could be targets for ASIP if it circulates.
Collapse
Affiliation(s)
- Yinuo Liu
- College of Animal Science, Jilin University, Changchun, China.,Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Lisa Schering
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Christa Kuehn
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Runjun Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun, China
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| |
Collapse
|
7
|
Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev 2018; 174:30-46. [PMID: 29458070 DOI: 10.1016/j.mad.2018.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Endogenous retroelements, transposons that mobilize through RNA intermediates, include some of the most abundant repetitive sequences of the human genome, such as Alu and LINE-1 sequences, and human endogenous retroviruses. Recent discoveries demonstrate that these mobile genetic elements not only act as intragenomic parasites, but also exert regulatory roles in living cells. The risk of genomic instability represented by endogenous retroelements is normally counteracted by a series of epigenetic control mechanisms which include, among the most important, CpG DNA methylation. Indeed, most of the genomic CpG sites subjected to DNA methylation in the nuclear DNA are carried by these repetitive elements. As other parts of the genome, endogenous retroelements and other transposable elements are subjected to deep epigenetic alterations during aging, repeatedly observed in the context of organismal and cellular senescence, in human and other species. This review summarizes the current status of knowledge about the epigenetic alterations occurring in this large, non-genic portion of the genome in aging and age-related conditions, with a focus on the causes and the possible functional consequences of these alterations.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Research Center on Aging (INRCA), via Birarelli 8, 60121 Ancona, Italy.
| |
Collapse
|
8
|
Jung J, Lee S, Cho HS, Park K, Ryu JW, Jung M, Kim J, Kim H, Kim DS. Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics 2018; 111:159-166. [PMID: 29366860 DOI: 10.1016/j.ygeno.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Non-coding RNA is no longer considered to be "junk" DNA, based on evidence uncovered in recent decades. In particular, the important role played by natural antisense transcripts (NATs) in regulating the expression of genes is receiving increasing attention. However, the regulatory mechanisms of NATs remain incompletely understood. It is well-known that the insertion of transposable elements (TEs) can affect gene transcription. Using a bioinformatics approach, we identified NATs using human mRNA sequences from the UCSC Genome Browser Database. Our in silico analysis identified 1079 NATs and 700 sense-antisense gene pairs. We identified 179 NATs that showed evidence of having been affected by TEs during cellular gene expression. These findings may provide an understanding of the complex regulation mechanisms of NATs. If our understanding of NATs as modulators of gene expression is further enhanced, we can develop ways to control gene expression.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sugi Lee
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Department of Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kunhyang Park
- Department of Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jea-Woon Ryu
- Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Minah Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeongkil Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - HyeRan Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Plant Systems Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Everson R, Pettitt L, Forman OP, Dower-Tylee O, McLaughlin B, Ahonen S, Kaukonen M, Komáromy AM, Lohi H, Mellersh CS, Sansom J, Ricketts SL. An intronic LINE-1 insertion in MERTK is strongly associated with retinopathy in Swedish Vallhund dogs. PLoS One 2017; 12:e0183021. [PMID: 28813472 PMCID: PMC5558984 DOI: 10.1371/journal.pone.0183021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/30/2017] [Indexed: 12/31/2022] Open
Abstract
The domestic dog segregates a significant number of inherited progressive retinal diseases, several of which mirror human retinal diseases and which are collectively termed progressive retinal atrophy (PRA). In 2014, a novel form of PRA was reported in the Swedish Vallhund breed, and the disease was mapped to canine chromosome 17. The causal mutation was not identified, but expression analyses of the retinas of affected Vallhunds demonstrated a 6-fold increased expression of the MERTK gene compared to unaffected dogs. Using 24 retinopathy cases and 97 controls with no clinical signs of retinopathy, we replicated the chromosome 17 association in Swedish Vallhunds from the UK and aimed to elucidate the causal variant underlying this association using whole genome sequencing (WGS) of an affected dog. This revealed a 6-8 kb insertion in intron 1 of MERTK that was not present in WGS of 49 dogs of other breeds. Sequencing and BLASTN analysis of the inserted segment was consistent with the insertion comprising a full-length intact LINE-1 retroelement. Testing of the LINE-1 insertion for association with retinopathy in the UK set of 24 cases and 97 controls revealed a strong statistical association (P-value 6.0 x 10-11) that was subsequently replicated in the original Finnish study set (49 cases and 89 controls (P-value 4.3 x 10-19). In a pooled analysis of both studies (73 cases and 186 controls), the LINE-1 insertion was associated with a ~20-fold increased risk of retinopathy (odds ratio 23.41, 95% confidence intervals 10.99-49.86, P-value 1.3 x 10-27). Our study adds further support for regulatory disruption of MERTK in Swedish Vallhund retinopathy; however, further work is required to establish a functional overexpression model. Future work to characterise the mechanism by which this intronic mutation disrupts gene regulation will further improve the understanding of MERTK biology and its role in retinal function.
Collapse
Affiliation(s)
- Richard Everson
- Centre for Small Animal Studies–Ophthalmology Unit, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Louise Pettitt
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Oliver P. Forman
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Olivia Dower-Tylee
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Bryan McLaughlin
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Saija Ahonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maria Kaukonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - András M. Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hannes Lohi
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Cathryn S. Mellersh
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Jane Sansom
- Centre for Small Animal Studies–Ophthalmology Unit, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Sally L. Ricketts
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Vafadar-Isfahani N, Parr C, McMillan LE, Sanner J, Yeo Z, Saddington S, Peacock O, Cruickshanks HA, Meehan RR, Lund JN, Tufarelli C. Decoupling of DNA methylation and activity of intergenic LINE-1 promoters in colorectal cancer. Epigenetics 2017; 12:465-475. [PMID: 28300471 PMCID: PMC5501206 DOI: 10.1080/15592294.2017.1300729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 01/02/2023] Open
Abstract
Hypomethylation of LINE-1 repeats in cancer has been proposed as the main mechanism behind their activation; this assumption, however, was based on findings from early studies that were biased toward young and transpositionally active elements. Here, we investigate the relationship between methylation of 2 intergenic, transpositionally inactive LINE-1 elements and expression of the LINE-1 chimeric transcript (LCT) 13 and LCT14 driven by their antisense promoters (L1-ASP). Our data from DNA modification, expression, and 5'RACE analyses suggest that colorectal cancer methylation in the regions analyzed is not always associated with LCT repression. Consistent with this, in HCT116 colorectal cancer cells lacking DNA methyltransferases DNMT1 or DNMT3B, LCT13 expression decreases, while cells lacking both DNMTs or treated with the DNMT inhibitor 5-azacytidine (5-aza) show no change in LCT13 expression. Interestingly, levels of the H4K20me3 histone modification are inversely associated with LCT13 and LCT14 expression. Moreover, at these LINE-1s, H4K20me3 levels rather than DNA methylation seem to be good predictor of their sensitivity to 5-aza treatment. Therefore, by studying individual LINE-1 promoters we have shown that in some cases these promoters can be active without losing methylation; in addition, we provide evidence that other factors (e.g., H4K20me3 levels) play prominent roles in their regulation.
Collapse
Affiliation(s)
| | - Christina Parr
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Lara E. McMillan
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Juliane Sanner
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Zhao Yeo
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Stephen Saddington
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Oliver Peacock
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | | | - Richard R. Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jonathan N. Lund
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Cristina Tufarelli
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, UK
| |
Collapse
|
11
|
Fernández-Medina RD, Carareto CMA, Struchiner CJ, Ribeiro JMC. Transposable elements in the Anopheles funestus transcriptome. Genetica 2017; 145:275-293. [PMID: 28424974 DOI: 10.1007/s10709-017-9964-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/27/2017] [Indexed: 12/27/2022]
Abstract
Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Av. Brasil, 4365, Rio de Janeiro, Brazil.
| | - Claudia M A Carareto
- Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Cláudio J Struchiner
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, 20852, USA
| |
Collapse
|
12
|
Grégoire L, Haudry A, Lerat E. The transposable element environment of human genes is associated with histone and expression changes in cancer. BMC Genomics 2016; 17:588. [PMID: 27506777 PMCID: PMC4979156 DOI: 10.1186/s12864-016-2970-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Only 2 % of the human genome code for proteins. Among the remaining 98 %, transposable elements (TEs) represent millions of sequences. TEs have an impact on genome evolution by promoting mutations. Especially, TEs possess their own regulatory sequences and can alter the expression pattern of neighboring genes. Since they can potentially be harmful, TE activity is regulated by epigenetic mechanisms. These mechanisms participate in the modulation of gene expression and can be associated with some human diseases resulting from gene expression deregulation. The fact that the TE silencing can be removed in cancer could explain a part of the changes in gene expression. Indeed, epigenetic modifications associated locally with TE sequences could impact neighboring genes since these modifications can spread to adjacent sequences. RESULTS We compared the histone enrichment, TE neighborhood, and expression divergence of human genes between a normal and a cancer conditions. We show that the presence of TEs near genes is associated with greater changes in histone enrichment and that differentially expressed genes harbor larger histone enrichment variation related to the presence of particular TEs. CONCLUSIONS Taken together, these results suggest that the presence of TEs near genes could favor important variation in gene expression when the cell environment is modified.
Collapse
Affiliation(s)
- Laura Grégoire
- Université de Lyon; F-69000, France; Université Lyon 1, CNRS, UMR 5558, Laboratoire Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France
| | - Annabelle Haudry
- Université de Lyon; F-69000, France; Université Lyon 1, CNRS, UMR 5558, Laboratoire Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France
| | - Emmanuelle Lerat
- Université de Lyon; F-69000, France; Université Lyon 1, CNRS, UMR 5558, Laboratoire Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France.
| |
Collapse
|
13
|
Guffanti G, Gaudi S, Klengel T, Fallon JH, Mangalam H, Madduri R, Rodriguez A, DeCrescenzo P, Glovienka E, Sobell J, Klengel C, Pato M, Ressler KJ, Pato C, Macciardi F. LINE1 insertions as a genomic risk factor for schizophrenia: Preliminary evidence from an affected family. Am J Med Genet B Neuropsychiatr Genet 2016; 171:534-45. [PMID: 26990047 DOI: 10.1002/ajmg.b.32437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
Recent studies show that human-specific LINE1s (L1HS) play a key role in the development of the central nervous system (CNS) and its disorders, and that their transpositions within the human genome are more common than previously thought. Many polymorphic L1HS, that is, present or absent across individuals, are not annotated in the current release of the genome and are customarily termed "non-reference L1s." We developed an analytical workflow to identify L1 polymorphic insertions with next-generation sequencing (NGS) using data from a family in which SZ segregates. Our workflow exploits two independent algorithms to detect non-reference L1 insertions, performs local de novo alignment of the regions harboring predicted L1 insertions and resolves the L1 subfamily designation from the de novo assembled sequence. We found 110 non-reference L1 polymorphic loci exhibiting Mendelian inheritance, the vast majority of which are already reported in dbRIP and/or euL1db, thus, confirming their status as non-reference L1 polymorphic insertions. Four previously undetected L1 polymorphic loci were confirmed by PCR amplification and direct sequencing of the insert. A large fraction of our non-reference L1s is located within the open reading frame of protein-coding genes that belong to pathways already implicated in the pathogenesis of schizophrenia. The finding of these polymorphic variants among SZ offsprings is intriguing and suggestive of putative pathogenic role. Our data show the utility of NGS to uncover L1 polymorphic insertions, a neglected type of genetic variants with the potential to influence the risk to develop schizophrenia like SNVs and CNVs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Simona Gaudi
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Italian National Institute of Health, Rome, Italy
| | - Torsten Klengel
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - James H Fallon
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Harry Mangalam
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Ravi Madduri
- Division of Mathematics and Computer Science, Argonne National Laboratory, Lemont, Illinois.,Computation Institute, University of Chicago, Chicago, Illinois
| | - Alex Rodriguez
- Division of Mathematics and Computer Science, Argonne National Laboratory, Lemont, Illinois.,Computation Institute, University of Chicago, Chicago, Illinois
| | - Paula DeCrescenzo
- Department of Psychiatry, Columbia University Medical Center and New York State Psychiatric Institute, New York, New York
| | - Emily Glovienka
- Department of Psychiatry, Columbia University Medical Center and New York State Psychiatric Institute, New York, New York
| | - Janet Sobell
- SUNY Downstate, College of Medicine, Brooklyn, New York
| | - Claudia Klengel
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Michele Pato
- SUNY Downstate, College of Medicine, Brooklyn, New York
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Carlos Pato
- SUNY Downstate, College of Medicine, Brooklyn, New York
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California.,Center for Autism Research and Treatment (CART), University of California, Irvine, California.,Center for Epigenetics and Metabolism, University of California, Irvine, California
| |
Collapse
|
14
|
Kines KJ, Sokolowski M, deHaro DL, Christian CM, Baddoo M, Smither ME, Belancio VP. The endonuclease domain of the LINE-1 ORF2 protein can tolerate multiple mutations. Mob DNA 2016; 7:8. [PMID: 27099633 PMCID: PMC4837594 DOI: 10.1186/s13100-016-0064-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/07/2016] [Indexed: 11/26/2022] Open
Abstract
Background Approximately 17 % of the human genome is comprised of the Long INterspersed Element-1 (LINE-1 or L1) retrotransposon, the only currently active autonomous family of retroelements. Though L1 elements have helped to shape mammalian genome evolution over millions of years, L1 activity can also be mutagenic and result in human disease. L1 expression has the potential to contribute to genomic instability via retrotransposition and DNA double-strand breaks (DSBs). Additionally, L1 is responsible for structural genomic variations induced by other transposable elements such as Alu and SVA, which rely on the L1 ORF2 protein for their propagation. Most of the genomic damage associated with L1 activity originates with the endonuclease domain of the ORF2 protein, which nicks the DNA in preparation for target-primed reverse transcription. Results Bioinformatic analysis of full-length L1 loci residing in the human genome identified numerous mutations in the amino acid sequence of the ORF2 endonuclease domain. Some of these mutations were found in residues which were predicted to be phosphorylation sites for cellular kinases. We mutated several of these putative phosphorylation sites in the ORF2 endonuclease domain and investigated the effect of these mutations on the function of the full-length ORF2 protein and the endonuclease domain (ENp) alone. Most of the single and multiple point mutations that were tested did not significantly impact expression of the full-length ORF2p, or alter its ability to drive Alu retrotransposition. Similarly, most of those same mutations did not significantly alter expression of ENp, or impair its ability to induce DNA damage and cause toxicity. Conclusions Overall, our data demonstrate that the full-length ORF2p or the ENp alone can tolerate several specific single and multiple point mutations in the endonuclease domain without significant impairment of their ability to support Alu mobilization or induce DNA damage, respectively. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0064-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Claiborne M Christian
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Melody Baddoo
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Madison E Smither
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| |
Collapse
|
15
|
Dhivya S, Premkumar K. Nomadic genetic elements contribute to oncogenic translocations: Implications in carcinogenesis. Crit Rev Oncol Hematol 2015; 98:81-93. [PMID: 26548742 DOI: 10.1016/j.critrevonc.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
Chromosomal translocations as molecular signatures have been reported in various malignancies but, the mechanism behind which is largely unknown. Swapping of chromosomal fragments occurs by induction of double strand breaks (DSBs), most of which were initially assumed de novo. However, decoding of human genome proved that transposable elements (TE) might have profound influence on genome integrity. TEs are highly conserved mobile genetic elements that generate DSBs, subsequently resulting in large chromosomal rearrangements. Previously TE insertions were thought to be harmless, but recently gains attention due to the origin of spectrum of post-insertional genomic alterations and subsequent transcriptional alterations leading to development of deleterious effects mainly carcinogenesis. Though the existing knowledge on the cancer-associated TE dynamics is very primitive, exploration of underlying mechanism promises better therapeutic strategies for cancer. Thus, this review focuses on the prevalence of TE in the genome, associated genomic instability upon transposition activation and impact on tumorigenesis.
Collapse
Affiliation(s)
- Sridaran Dhivya
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumpati Premkumar
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
16
|
Ji Y, Marra NJ, DeWoody JA. Comparative analysis of active retrotransposons in the transcriptomes of three species of heteromyid rodents. Gene 2015; 562:95-106. [DOI: 10.1016/j.gene.2015.02.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 10/24/2022]
|
17
|
Belancio VP. LINE-1 activity as molecular basis for genomic instability associated with light exposure at night. Mob Genet Elements 2015; 5:1-5. [PMID: 26442182 DOI: 10.1080/2159256x.2015.1037416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/29/2022] Open
Abstract
The original hypothesis that exposure to light at night increases risk of breast cancer via suppression of nocturnal melatonin production was proposed over 2 decades ago. In 2007, shift work that involves circadian disruption has been recognized by the World Health Organization as a probable human carcinogen. Our discovery of melatonin-dependent regulation of LINE-1 retrotransposon expression and mobilization is the latest addition to the list of cellular genes and processes that are affected by light exposure at night. This finding establishes an unexpected health relevant connection between this endogenous DNA damaging agent and environmental light exposure. It also offers an appealing hypothesis pertaining to the origin of genomic instability in the genomes of individuals with light at night- or age-associated disruption of melatonin signaling.
Collapse
Affiliation(s)
- Victoria P Belancio
- Department of Structural and Cellular Biology; Tulane Cancer Center; Tulane Cancer for Aging; Tulane Center for Circadian Biology; Tulane University ; New Orleans, LA USA
| |
Collapse
|
18
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Del Re B, Giorgi G. Cell-host, LINE and environment: Three players in search of a balance. Mob Genet Elements 2014; 3:e24040. [PMID: 23734298 PMCID: PMC3655780 DOI: 10.4161/mge.24040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 12/19/2022] Open
Abstract
Long interspersed nuclear elements -1 (LINEs, L1s) are retroelements occupying almost 17% of the human genome. L1 retrotransposition can cause deleterious effects on the host-cell and it is generally inhibited by suppressive mechanisms, but it can occur in some specific cells during early development as well as in some tumor cells and in the presence of several environmental factors. In a recent publication we reported that extremely low frequency pulsed magnetic field can affect L1 retrotransposition in neuroblastoma cells. In this commentary we discuss the interaction between environment and L1 activity in the light of the new emerging paradigm of host-LINE relationship.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology; University of Bologna; Bologna, Italy
| | | |
Collapse
|
20
|
Guffanti G, Gaudi S, Fallon JH, Sobell J, Potkin SG, Pato C, Macciardi F. Transposable elements and psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:201-16. [PMID: 24585726 DOI: 10.1002/ajmg.b.32225] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/21/2014] [Indexed: 12/15/2022]
Abstract
Transposable Elements (TEs) or transposons are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in genomic architecture and regulation related to both normal function and disease states. Recently, the identification of active TEs in several different human brain regions suggests that TEs play a role in normal brain development and adult physiology and quite possibly in psychiatric disorders. TEs have been implicated in hemophilia, neurofibromatosis, and cancer. With the advent of next-generation whole-genome sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. We will review the biology of TEs and early evidence for TE involvement in psychiatric disorders.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, Columbia University, New York, New York
| | | | | | | | | | | | | |
Collapse
|
21
|
Serrano-Candelas E, Farré D, Aranguren-Ibáñez Á, Martínez-Høyer S, Pérez-Riba M. The vertebrate RCAN gene family: novel insights into evolution, structure and regulation. PLoS One 2014; 9:e85539. [PMID: 24465593 PMCID: PMC3896409 DOI: 10.1371/journal.pone.0085539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/04/2013] [Indexed: 12/30/2022] Open
Abstract
Recently there has been much interest in the Regulators of Calcineurin (RCAN) proteins which are important endogenous modulators of the calcineurin-NFATc signalling pathway. They have been shown to have a crucial role in cellular programmes such as the immune response, muscle fibre remodelling and memory, but also in pathological processes such as cardiac hypertrophy and neurodegenerative diseases. In vertebrates, the RCAN family form a functional subfamily of three members RCAN1, RCAN2 and RCAN3 whereas only one RCAN is present in the rest of Eukarya. In addition, RCAN genes have been shown to collocate with RUNX and CLIC genes in ACD clusters (ACD21, ACD6 and ACD1). How the RCAN genes and their clustering in ACDs evolved is still unknown. After analysing RCAN gene family evolution using bioinformatic tools, we propose that the three RCAN vertebrate genes within the ACD clusters, which evolved from single copy genes present in invertebrates and lower eukaryotes, are the result of two rounds of whole genome duplication, followed by a segmental duplication. This evolutionary scenario involves the loss or gain of some RCAN genes during evolution. In addition, we have analysed RCAN gene structure and identified the existence of several characteristic features that can be involved in RCAN evolution and gene expression regulation. These included: several transposable elements, CpG islands in the 5′ region of the genes, the existence of antisense transcripts (NAT) associated with the three human genes, and considerable evidence for bidirectional promoters that regulate RCAN gene expression. Furthermore, we show that the CpG island associated with the RCAN3 gene promoter is unmethylated and transcriptionally active. All these results provide timely new insights into the molecular mechanisms underlying RCAN function and a more in depth knowledge of this gene family whose members are obvious candidates for the development of future therapies.
Collapse
Affiliation(s)
- Eva Serrano-Candelas
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Domènec Farré
- Biological Aggression and Response Mechanisms Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer – IDIBAPS, Barcelona, Spain
| | - Álvaro Aranguren-Ibáñez
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Sergio Martínez-Høyer
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Mercè Pérez-Riba
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|
22
|
Zhao HJ, Cui HR, Xu XH, Tan YY, Fu JJ, Liu GZ, Poirier Y, Shu QY. Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:3009-20. [PMID: 24042572 DOI: 10.1007/s00122-013-2189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 09/05/2013] [Indexed: 05/12/2023]
Abstract
The rice low phytic acid (lpa) mutant Os-lpa-XS110-1(XS-lpa) has ~45 % reduction in seed phytic acid (PA) compared with the wild-type cultivar Xiushui 110. Previously, a single recessive gene mutation was shown to be responsible for the lpa phenotype and was mapped to a region of chromosome 3 near OsMIK (LOC_Os03g52760) and OsIPK1 (LOC_Os03g51610), two genes involved in PA biosynthesis. Here, we report the identification of a large insert in the intron of OsMIK in the XS-lpa mutant. Sequencing of fragments amplified through TAIL-PCRs revealed that the insert was a derivative of the LINE retrotransposon gene LOC_Os03g56910. Further analyses revealed the following characteristics of the insert and its impacts: (1) the inserted sequence of LOC_Os03g56910 was split at its third exon and rejoined inversely, with its 5' and 3' flanking sequences inward and the split third exon segments outward; (2) the LOC_Os03g56910 remained in its original locus in XS-lpa, and the insertion probably resulted from homologous recombination repair of a DNA double strand break; (3) while the OsMIK transcripts of XS-lpa and Xiushui 110 were identical, substantial reductions of the transcript abundance (~87 %) and the protein level (~60 %) were observed in XS-lpa, probably due to increased methylation in its promoter region. The above findings are discussed in the context of plant mutagenesis, epigenetics and lpa breeding.
Collapse
Affiliation(s)
- Hai-Jun Zhao
- State Key Laboratory of Rice Biology and Key Laboratory of Nuclear-Agricultural Sciences of the Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Linker S, Hedges D. Linear decay of retrotransposon antisense bias across genes is contingent upon tissue specificity. PLoS One 2013; 8:e79402. [PMID: 24244495 PMCID: PMC3828378 DOI: 10.1371/journal.pone.0079402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/28/2013] [Indexed: 12/23/2022] Open
Abstract
Retrotransposons comprise approximately half of the human genome and contribute to chromatin structure, regulatory motifs, and protein-coding sequences. Since retrotransposon insertions can disrupt functional genetic elements as well as introduce new sequence motifs to a region, they have the potential to affect the function of genes that harbour insertions as well as those nearby. Partly as a result of these effects, the distribution of retrotransposons across the genome is non-uniform and there are observed imbalances in the orientation of insertions with respect to the transcriptional direction of the containing gene. Although some of the factors underlying the observed distributions are understood, much of the variability remains unexplained. Detailed characterization of retrotransposon density in genes could help inform predictions of the functional consequence of de novo as well as polymorphic insertions. In order to characterize the relationship between genes and inserted elements, we have examined the distribution of retrotransposons and their internal motifs within tissue-specific and housekeeping genes. We have identified that the previously established retrotransposon antisense bias decays at a linear rate across genes, resulting in an equal density of sense and antisense retrotransposons near the 3'-UTR. In addition, the decay of antisense bias across genes is less pronounced among tissue-specific genes. Our results provide support for the scenario in which this linear decay in antisense bias is established by natural selection shortly after retrotransposon integration, and that total antisense bias observed is above and beyond any bias introduced by the integration process itself. Finally, we provide an example of a retrotransposon acting as an eQTL on a coincident gene, highlighting one of several possible avenues through which insertions may modulate gene function.
Collapse
Affiliation(s)
- Sara Linker
- Hussman Institute for Human Genomics, Dr John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Dale Hedges
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
24
|
Forconi M, Chalopin D, Barucca M, Biscotti MA, De Moro G, Galiana D, Gerdol M, Pallavicini A, Canapa A, Olmo E, Volff JN. Transcriptional activity of transposable elements in coelacanth. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:379-89. [PMID: 24038780 DOI: 10.1002/jez.b.22527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/04/2013] [Accepted: 07/14/2013] [Indexed: 01/22/2023]
Abstract
The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity.
Collapse
Affiliation(s)
- Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; Institut de Génomique Fonctionnelle de Lyon, ENS Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
McCue AD, Nuthikattu S, Slotkin RK. Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biol 2013; 10:1379-95. [PMID: 23863322 PMCID: PMC3817159 DOI: 10.4161/rna.25555] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transposable elements (TEs) are known to influence the regulation of neighboring genes through a variety of mechanisms. Additionally, it was recently discovered that TEs can regulate non-neighboring genes through the trans-acting nature of small interfering RNAs (siRNAs). When the epigenetic repression of TEs is lost, TEs become transcriptionally active, and the host cell acts to repress mutagenic transposition by degrading TE mRNAs into siRNAs. In this study, we have performed a genome-wide analysis in the model plant Arabidopsis thaliana and found that TE siRNA-based regulation of genic mRNAs is more pervasive than the two formerly characterized proof-of-principle examples. We identified 27 candidate genic mRNAs that do not contain a TE fragment but are regulated through partial complementarity by the accumulation of TE siRNAs and are therefore influenced by TE epigenetic activation. We have experimentally confirmed several gene targets and demonstrated that they respond to the accumulation of specific 21 nucleotide TE siRNAs that are incorporated into the Arabidopsis Argonaute1 protein. Additionally, we found that one TE siRNA specifically targets and inhibits the formation of a host protein that acts to repress TE activity, suggesting that TEs harbor and potentially evolutionarily select short sequences to act as suppressors of host TE repression.
Collapse
Affiliation(s)
- Andrea D McCue
- Department of Molecular Genetics & Center for RNA Biology; The Ohio State University; Columbus, OH, USA
| | | | | |
Collapse
|
26
|
Abstract
Do data from the Encyclopedia Of DNA Elements (ENCODE) project render the notion of junk DNA obsolete? Here, I review older arguments for junk grounded in the C-value paradox and propose a thought experiment to challenge ENCODE's ontology. Specifically, what would we expect for the number of functional elements (as ENCODE defines them) in genomes much larger than our own genome? If the number were to stay more or less constant, it would seem sensible to consider the rest of the DNA of larger genomes to be junk or, at least, assign it a different sort of role (structural rather than informational). If, however, the number of functional elements were to rise significantly with C-value then, (i) organisms with genomes larger than our genome are more complex phenotypically than we are, (ii) ENCODE's definition of functional element identifies many sites that would not be considered functional or phenotype-determining by standard uses in biology, or (iii) the same phenotypic functions are often determined in a more diffuse fashion in larger-genomed organisms. Good cases can be made for propositions ii and iii. A larger theoretical framework, embracing informational and structural roles for DNA, neutral as well as adaptive causes of complexity, and selection as a multilevel phenomenon, is needed.
Collapse
Affiliation(s)
- W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 4R2.
| |
Collapse
|
27
|
Common genetic variants in Wnt signaling pathway genes as potential prognostic biomarkers for colorectal cancer. PLoS One 2013; 8:e56196. [PMID: 23405266 PMCID: PMC3566082 DOI: 10.1371/journal.pone.0056196] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/07/2013] [Indexed: 12/24/2022] Open
Abstract
Compelling evidence has implicated the Wnt signaling pathway in the pathogenesis of colorectal cancer. We assessed the use of tag single nucleotide polymorphisms (tSNPs) in adenomatous polyposis coli (APC)/β-catenin (CTNNB1) genes to predict outcomes in patients with colorectal cancer. We selected and genotyped 10 tSNP to predict common variants across entire APC and CTNNB1 genes in 282 colorectal cancer patients. The associations of these tSNPs with distant metastasis-free survival and overall survival were evaluated by Kaplan-Meier analysis, Cox regression model, and survival tree analysis. The 5-year overall survival rate was 68.3%. Survival tree analysis identified a higher-order genetic interaction profile consisting of the APC rs565453, CTNNB1 2293303, and APC rs1816769 that was significantly associated with overall survival. The 5-year survival overall rates were 89.2%, 66.1%, and 58.8% for the low-, medium-, and high-risk genetic profiles, respectively (log-rank P = 0.001). After adjusting for possible confounders, including age, gender, carcinoembryonic antigen levels, tumor differentiation, stage, lymphovascular invasion, perineural invasion, and lymph node involvement, the genetic interaction profile remained significant. None of the studied SNPs were individually associated with distant metastasis-free survival and overall survival. Our results suggest that the genetic interaction profile among Wnt pathway SNPs might potentially increase the prognostic value in outcome prediction for colorectal cancer.
Collapse
|
28
|
Miller HC, Biggs PJ, Voelckel C, Nelson NJ. De novo sequence assembly and characterisation of a partial transcriptome for an evolutionarily distinct reptile, the tuatara (Sphenodon punctatus). BMC Genomics 2012; 13:439. [PMID: 22938396 PMCID: PMC3478169 DOI: 10.1186/1471-2164-13-439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/24/2012] [Indexed: 02/08/2023] Open
Abstract
Background The tuatara (Sphenodon punctatus) is a species of extraordinary zoological interest, being the only surviving member of an entire order of reptiles which diverged early in amniote evolution. In addition to their unique phylogenetic placement, many aspects of tuatara biology, including temperature-dependent sex determination, cold adaptation and extreme longevity have the potential to inform studies of genome evolution and development. Despite increasing interest in the tuatara genome, genomic resources for the species are still very limited. We aimed to address this by assembling a transcriptome for tuatara from an early-stage embryo, which will provide a resource for genome annotation, molecular marker development and studies of development and adaptation in tuatara. Results We obtained 30 million paired-end 50 bp reads from an Illumina Genome Analyzer and assembled them with Velvet and Oases using a range of kmers. After removing redundancy and filtering out low quality transcripts, our transcriptome dataset contained 32911 transcripts, with an N50 of 675 and a mean length of 451 bp. Almost 50% (15965) of these transcripts could be annotated by comparison with the NCBI non-redundant (NR) protein database or the chicken, green anole and zebrafish UniGene sets. A scan of candidate genes and repetitive elements revealed genes involved in immune function, sex differentiation and temperature-sensitivity, as well as over 200 microsatellite markers. Conclusions This dataset represents a major increase in genomic resources for the tuatara, increasing the number of annotated gene sequences from just 60 to almost 16,000. This will facilitate future research in sex determination, genome evolution, local adaptation and population genetics of tuatara, as well as inform studies on amniote evolution.
Collapse
Affiliation(s)
- Hilary C Miller
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | | | | | | |
Collapse
|
29
|
Hedges DJ, Belancio VP. Restless genomes humans as a model organism for understanding host-retrotransposable element dynamics. ADVANCES IN GENETICS 2011; 73:219-62. [PMID: 21310298 DOI: 10.1016/b978-0-12-380860-8.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since their initial discovery in maize, there have been various attempts to categorize the relationship between transposable elements (TEs) and their host organisms. These have ranged from TEs being selfish parasites to their role as essential, functional components of organismal biology. Research over the past several decades has, in many respects, only served to complicate the issue even further. On the one hand, investigators have amassed substantial evidence concerning the negative effects that TE-mutagenic activity can have on host genomes and organismal fitness. On the other hand, we find an increasing number of examples, across several taxa, of TEs being incorporated into functional biological roles for their host organism. Some 45% of our own genomes are comprised of TE copies. While many of these copies are dormant, having lost their ability to mobilize, several lineages continue to actively proliferate in modern human populations. With its complement of ancestral and active TEs, the human genome exhibits key aspects of the host-TE dynamic that has played out since early on in organismal evolution. In this review, we examine what insights the particularly well-characterized human system can provide regarding the nature of the host-TE interaction.
Collapse
Affiliation(s)
- Dale J Hedges
- Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | |
Collapse
|