1
|
Garzon F, Barrientos C, Anvene RE, Mba FE, Fallabrino A, Formia A, Godley BJ, Gonder MK, Prieto CM, Ayetebe JM, Metcalfe K, Montgomery D, Nsogo J, Nze JCO, Possardt E, Salazar ER, Tiwari M, Witt MJ. Spatial ecology and conservation of leatherback turtles (Dermochelys coriacea) nesting in Bioko, Equatorial Guinea. PLoS One 2023; 18:e0286545. [PMID: 37315005 DOI: 10.1371/journal.pone.0286545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Bioko Island (Equatorial Guinea) hosts important nesting habitat for leatherback sea turtles, with the main nesting beaches found on the island's southern end. Nest monitoring and protection have been ongoing for more than two decades, although distribution and habitat range at sea remains to be determined. This study uses satellite telemetry to describe the movements of female leatherback turtles (n = 10) during and following the breeding season, tracking them to presumed offshore foraging habitats in the south Atlantic Ocean. Leatherback turtles spent 100% of their time during the breeding period within the Exclusive Economic Zone (EEZ) of Equatorial Guinea, with a core distribution focused on the south of Bioko Island extending up to 10 km from the coast. During this period, turtles spent less than 10% of time within the existing protected area. Extending the border of this area by 3 km offshore would lead to a greater than threefold increase in coverage of turtle distribution (29.8 ± 19.0% of time), while an expansion to 15 km offshore would provide spatial coverage for more than 50% of tracking time. Post-nesting movements traversed the territorial waters of Sao Tome and Principe (6.4%of tracking time), Brazil (0.85%), Ascension (1.8%), and Saint Helena (0.75%). The majority (70%) of tracking time was spent in areas beyond national jurisdiction (i.e. the High Seas). This study reveals that conservation benefits could be achieved by expanding existing protected areas stretching from the Bioko coastal zone, and suggests shared migratory routes and foraging space between the Bioko population and other leatherback turtle rookeries in this region.
Collapse
Affiliation(s)
- Francesco Garzon
- Hatherley Laboratories, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | | | - Rigoberto Esono Anvene
- Tortugas Marinas de Guinea Ecuatorial (TOMAGE), Instituto Nacional de Desarrollo Forestal y Manejo de las Areas Protegidas (INDEFOR-AP), Bata, Equatorial Guinea
| | - Feme Esono Mba
- Tortugas Marinas de Guinea Ecuatorial (TOMAGE), Instituto Nacional de Desarrollo Forestal y Manejo de las Areas Protegidas (INDEFOR-AP), Bata, Equatorial Guinea
| | - Alejandro Fallabrino
- Tortugas Marinas de Guinea Ecuatorial (TOMAGE), Instituto Nacional de Desarrollo Forestal y Manejo de las Areas Protegidas (INDEFOR-AP), Bata, Equatorial Guinea
| | - Angela Formia
- Tortugas Marinas de Guinea Ecuatorial (TOMAGE), Instituto Nacional de Desarrollo Forestal y Manejo de las Areas Protegidas (INDEFOR-AP), Bata, Equatorial Guinea
- African Aquatic Conservation Fund, Chillmark, Massachusetts, United States of America
| | - Brendan J Godley
- Centre for Ecology and Conservation, Faculty of Environment, Sustainability and Economy, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Mary K Gonder
- Bioko Biodiversity Protection Program, Malabo, Bioko Norte, Equatorial Guinea
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, Pennsylvania, United States of America
| | | | | | - Kristian Metcalfe
- African Aquatic Conservation Fund, Chillmark, Massachusetts, United States of America
| | - David Montgomery
- Bioko Biodiversity Protection Program, Malabo, Bioko Norte, Equatorial Guinea
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Juan Nsogo
- Tortugas Marinas de Guinea Ecuatorial (TOMAGE), Instituto Nacional de Desarrollo Forestal y Manejo de las Areas Protegidas (INDEFOR-AP), Bata, Equatorial Guinea
| | - Juan-Cruz Ondo Nze
- Bioko Biodiversity Protection Program, Malabo, Bioko Norte, Equatorial Guinea
- Universidad Nacional de Guinea Ecuatorial, Malabo, Equatorial Guinea
| | - Earl Possardt
- US National Fish and Wildlife Service, Division of International Conservation, Falls Church, Virginia, United States of America
| | | | - Manjula Tiwari
- Ocean Ecology Network, Research Affiliate of NOAA-National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, California, United States of America
| | - Matthew J Witt
- Hatherley Laboratories, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
2
|
Veelenturf CA, Sinclair EM, Paladino FV, Honarvar S. Predicting the impacts of sea level rise in sea turtle nesting habitat on Bioko Island, Equatorial Guinea. PLoS One 2020; 15:e0222251. [PMID: 32726310 PMCID: PMC7390326 DOI: 10.1371/journal.pone.0222251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Sea level is expected to rise 44 to 74 cm by the year 2100, which may have critical, previously un-investigated implications for sea turtle nesting habitat on Bioko Island, Equatorial Guinea. This study investigates how nesting habitat will likely be lost and altered with various increases in sea level, using global sea level rise (SLR) predictions from the Intergovernmental Panel on Climate Change. Beach profiling datasets from Bioko's five southern nesting beaches were used in GIS to create models to estimate habitat loss with predicted increases in sea level by years 2046-2065 and 2081-2100. The models indicate that an average of 62% of Bioko's current nesting habitat could be lost by 2046-2065 and 87% by the years 2081-2100. Our results show that different study beaches showed different levels of vulnerability to increases in SLR. In addition, on two beaches erosion and tall vegetation berms have been documented, causing green turtles to nest uncharacteristically in front of the vegetation line. We also report that development plans are currently underway on the beach least susceptible to future increases in sea level, highlighting how anthropogenic encroachment combined with SLR can be particularly detrimental to nesting turtle populations. Identified habitat sensitivities to SLR will be used to inform the government of Equatorial Guinea to consider the vulnerability of their resident turtle populations and projected climate change implications when planning for future development. To our knowledge this is the first study to predict the impacts of SLR on a sea turtle nesting habitat in Africa.
Collapse
Affiliation(s)
- Callie A Veelenturf
- Biology Department, Purdue University Fort Wayne, Fort Wayne, IN, United States of America.,Bioko Marine Turtle Program, Malabo, Equatorial Guinea
| | - Elizabeth M Sinclair
- Biology Department, Purdue University Fort Wayne, Fort Wayne, IN, United States of America.,Bioko Marine Turtle Program, Malabo, Equatorial Guinea
| | - Frank V Paladino
- Biology Department, Purdue University Fort Wayne, Fort Wayne, IN, United States of America.,Bioko Marine Turtle Program, Malabo, Equatorial Guinea
| | - Shaya Honarvar
- Biology Department, Purdue University Fort Wayne, Fort Wayne, IN, United States of America.,Bioko Marine Turtle Program, Malabo, Equatorial Guinea.,School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
3
|
Mettler E, Clyde-Brockway CE, Honarvar S, Paladino FV. Migratory corridor linking Atlantic green turtle, Chelonia mydas, nesting site on Bioko Island, Equatorial Guinea to Ghanaian foraging grounds. PLoS One 2019; 14:e0213231. [PMID: 31226114 PMCID: PMC6588206 DOI: 10.1371/journal.pone.0213231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022] Open
Abstract
This study uses satellite telemetry to track post-nesting movements of endangered green turtles (Chelonia mydas) (n = 6) in the Gulf of Guinea. It identifies a migratory corridor linking breeding grounds of Atlantic green turtles nesting on Bioko Island, Equatorial Guinea, to foraging grounds in the coastal waters of Accra, Ghana. Track lengths of 20–198 days were analyzed, for a total of 536 movement days for the six turtles. Migratory pathways and foraging grounds were identified by applying a switching state space model to locational data, which provides daily position estimates to identify shifts between migrating and foraging behavior. Turtles exhibited a combination of coastal and oceanic migrations pathways that ranged from 957 km to 1,131 km. Of the six turtles, five completed their migration and maintained residency at the same foraging ground near the coastal waters of Accra, Ghana until transmission was lost. These five resident turtles inhabit heavily fished waters and are vulnerable to a variety of anthropogenic threats. The identification of these foraging grounds highlights the importance of these coastal waters for the protection of the endangered Atlantic green turtle.
Collapse
Affiliation(s)
- Emily Mettler
- Department of Biology, Purdue University, Fort Wayne, Indiana, United States of America
- * E-mail:
| | | | - Shaya Honarvar
- Department of Biology, Purdue University, Fort Wayne, Indiana, United States of America
- Bioko Marine Turtle Program, Malabo, Equatorial Guinea
| | - Frank V. Paladino
- Department of Biology, Purdue University, Fort Wayne, Indiana, United States of America
| |
Collapse
|