1
|
Bubba L, Benschop KSM, Blomqvist S, Duizer E, Martin J, Shaw AG, Bailly JL, Rasmussen LD, Baicus A, Fischer TK, Harvala H. Wastewater Surveillance in Europe for Non-Polio Enteroviruses and Beyond. Microorganisms 2023; 11:2496. [PMID: 37894154 PMCID: PMC10608818 DOI: 10.3390/microorganisms11102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Wastewater surveillance (WWS) was developed in the early 1960s for the detection of poliovirus (PV) circulation in the population. It has been used to monitor several pathogens, including non-polio enteroviruses (NPEVs), which are increasingly recognised as causes of morbidity in children. However, when applying WWS to a new pathogen, it is important to consider the purpose of such a study as well as the suitability of the chosen methodology. With this purpose, the European Non-Polio Enterovirus Network (ENPEN) organised an expert webinar to discuss its history, methods, and applications; its evolution from a culture-based method to molecular detection; and future implementation of next generation sequencing (NGS). The first simulation experiments with PV calculated that a 400 mL sewage sample is sufficient for the detection of viral particles if 1:10,000 people excrete poliovirus in a population of 700,000 people. If the method is applied correctly, several NPEV types are detected. Despite culture-based methods remaining the gold standard for WWS, direct methods followed by molecular-based and sequence-based assays have been developed, not only for enterovirus but for several pathogens. Along with case-based sentinel and/or syndromic surveillance, WWS for NPEV and other pathogens represents an inexpensive, flexible, anonymised, reliable, population-based tool for monitoring outbreaks and the (re)emergence of these virus types/strains within the general population.
Collapse
Affiliation(s)
- Laura Bubba
- European Non-Polio Enterovirus Network (E.N.P.E.N.), 1207 Geneva, Switzerland
| | - Kimberley S. M. Benschop
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (K.S.M.B.); (E.D.)
| | - Soile Blomqvist
- Finnish Institute for Health and Welfare, P.O. Box 95, 70701 Kuopio, Finland;
| | - Erwin Duizer
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (K.S.M.B.); (E.D.)
| | - Javier Martin
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Potters Bar EN6 3QG, UK;
| | - Alexander G. Shaw
- MRC Centre for Global Infectious Disease Analysis, London SW7 2AZ, UK;
- Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London SW7 2BX, UK
| | - Jean-Luc Bailly
- Laboratoire Micro-Organismes Genome Environnement (LMGE), Université Clermont Auvergne CNRS, 63001 Clermont-Ferrand, France;
| | - Lasse D. Rasmussen
- Virus Surveillance and Research Section Department of Virus and Microbiological Special Diagnostics Statens Serum Institut, DK-2300 Copenhagen, Denmark;
| | - Anda Baicus
- Enteric Viral Infections Laboratory, Cantacuzino National Institute for Medical-Military Research and Development, 020123 Bucharest, Romania;
| | - Thea K. Fischer
- Department of Clinical Research, University Hospital of Nordsjaelland, 3400 Hilleroed, Denmark
- Department of Public Health, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Heli Harvala
- Microbiology Services National Health Service (NHS) Blood and Transplant, London NW9 5BG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Fratty IS, Kriger O, Weiss L, Vasserman R, Erster O, Mendelson E, Sofer D, Weil M. Increased detection of Echovirus 6-associated meningitis in patients hospitalized during the COVID-19 pandemic, Israel 2021-2022. J Clin Virol 2023; 162:105425. [PMID: 37023500 PMCID: PMC10038676 DOI: 10.1016/j.jcv.2023.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Outbreaks of enteroviral meningitis occur periodically and may lead to hospitalization and severe disease. OBJECTIVE To analyze and describe the meningitis outbreak in patients hospitalized in Israel in 2021-2022, during the COVID-19 pandemic. RESULTS In December 2021, before the emergence of the SARS-CoV-2 omicron variant, an off-season increase in enterovirus (EV) infections was observed among patients hospitalized with meningitis. In January 2022, enterovirus cases decreased by 66% in parallel with the peak of the Omicron wave, and then increased rapidly by 78% in March (compared with February) after a decline in Omicron cases. Sequencing of the enterovirus-positive samples showed a dominance of echovirus 6 (E-6) (29%) before and after the Omicron wave. Phylogenetic analysis found that all 29 samples were very similar and all clustered in the E-6 C1 subtype. The main E-6 symptoms observed were fever and headache, along with vomiting and neck stiffness. The median patient age was 25 years, with a broad range (0-60 years). CONCLUSION An upsurge in enterovirus cases was observed after the decline of the SARS-CoV-2 omicron wave. The dominant subtype was E-6, which was present prior to the emergence of the omicron variant, but increased rapidly only after the omicron wave decline. We hypothesize that the omicron wave delayed the rise in E-6-associated meningitis.
Collapse
Affiliation(s)
- Ilana S Fratty
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel; The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Or Kriger
- Sheba Medical Center, Pediatric Infectious Disease Unit, Ramat-Gan, Israel
| | - Leah Weiss
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Rinat Vasserman
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Oran Erster
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
| | - Merav Weil
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
3
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
4
|
Tao Z, Lin X, Liu Y, Ji F, Wang S, Xiong P, Zhang L, Xu Q, Xu A, Cui N. Detection of multiple human astroviruses in sewage by next generation sequencing. WATER RESEARCH 2022; 218:118523. [PMID: 35525029 DOI: 10.1016/j.watres.2022.118523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Human astrovirus (HAstV) composes of classic HAstV serotypes 1-8 and recently discovered novel HAstV-MLB and HAstV-VA strains. A number of studies have demonstrated that wastewater analysis is an effective approach to understand the prevalence and diversity of enteric viruses in local population. However, a comprehensive analysis of classic and novel HAstVs in sewage is still lacking. In this study, sewage samples were collected monthly from Jinan, China during 2018-2019. Quantification of HAstV genomes was performed by real-time quantitative PCR. Different from previous studies which focused on partial ORF1b or ORF2 gene, complete ORF2 region of HAstV was amplified from sewage concentrates, and amplicons were subjected to next generation sequencing (NGS) and genetic analysis. This methodology allowed detection of 18 astroviruses, of which 7 (HAstV-1, -2, -4, -5, VA1, VA2, and VA3) were detected in all sewage samples. A new strain VA6 mapped to the HMO clade was identified in 20.8% of samples, with 82.4%-83.3% nucleotide identities to the closest strain VA5. The viral load of classic, MLB and VA clades in sewage samples ranged from 3.7 × 104 to 4.6 × 107, 3.4 × 104 to 3.9 × 106, and 3.3 × 104 to 4.1 × 106 copies per liter, respectively. Phylogenetic analysis based on complete ORF2 region reflected local HAstVs within each genotype constituted multiple co-circulating lineages. Existence of several new lineages composed exclusively or predominantly of Chinese sequences was observed as well. These results demonstrate sewage contains astroviruses with considerable high diversities. NGS based environmental surveillance greatly improves the understanding of HAstV circulation and should be encouraged.
Collapse
Affiliation(s)
- Zexin Tao
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Xiaojuan Lin
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Yao Liu
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Feng Ji
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Suting Wang
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Ping Xiong
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Li Zhang
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Qing Xu
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Aiqiang Xu
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China.
| | - Ning Cui
- Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| |
Collapse
|
5
|
Soetens L, Backer JA, Hahné S, van Binnendijk R, Gouma S, Wallinga J. Visual tools to assess the plausibility of algorithm-identified infectious disease clusters: an application to mumps data from the Netherlands dating from January 2009 to June 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30914076 PMCID: PMC6440581 DOI: 10.2807/1560-7917.es.2019.24.12.1800331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Introduction With growing amounts of data available, identification of clusters of persons linked to each other by transmission of an infectious disease increasingly relies on automated algorithms. We propose cluster finding to be a two-step process: first, possible transmission clusters are identified using a cluster algorithm, second, the plausibility that the identified clusters represent genuine transmission clusters is evaluated. Aim To introduce visual tools to assess automatically identified clusters. Methods We developed tools to visualise: (i) clusters found in dimensions of time, geographical location and genetic data; (ii) nested sub-clusters within identified clusters; (iii) intra-cluster pairwise dissimilarities per dimension; (iv) intra-cluster correlation between dimensions. We applied our tools to notified mumps cases in the Netherlands with available disease onset date (January 2009 – June 2016), geographical information (location of residence), and pathogen sequence data (n = 112). We compared identified clusters to clusters reported by the Netherlands Early Warning Committee (NEWC). Results We identified five mumps clusters. Three clusters were considered plausible. One was questionable because, in phylogenetic analysis, genetic sequences related to it segregated in two groups. One was implausible with no smaller nested clusters, high intra-cluster dissimilarities on all dimensions, and low intra-cluster correlation between dimensions. The NEWC reports concurred with our findings: the plausible/questionable clusters corresponded to reported outbreaks; the implausible cluster did not. Conclusion Our tools for assessing automatically identified clusters allow outbreak investigators to rapidly spot plausible transmission clusters for mumps and other human-to-human transmissible diseases. This fast information processing potentially reduces workload.
Collapse
Affiliation(s)
- Loes Soetens
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jantien A Backer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Susan Hahné
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Rob van Binnendijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jacco Wallinga
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
6
|
Pellegrinelli L, Galli C, Binda S, Primache V, Tagliacarne C, Pizza F, Mazzini R, Pariani E, Romanò L. Molecular Characterization and Phylogenetic Analysis of Enteroviruses and Hepatitis A Viruses in Sewage Samples, Northern Italy, 2016. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:393-399. [PMID: 31420848 DOI: 10.1007/s12560-019-09401-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
Enteroviruses (EVs) and Hepatitis A Viruses (HAVs) are human pathogens with a wide spectrum of clinical manifestations. The monitoring of sewage samples enables to monitor the EVs and HAVs in circulation among the general population and recognize possible outbreaks. This study focused on the molecular characterization and phylogenetic analysis of the EVs and HAVs identified in 33 sewage samples collected every 15 days at the influent of a wastewater treatment plant located in Northern Italy from March to October 2016. According to the results of the molecular characterization, the most frequently identified viruses were Echovirus 6 (E-6), E-11 and HAV-IA. The phylogenetic analyses indicated the rapid genetic evolution of E-6 and E-1; noteworthy, most E-11 strains clustered with a strain isolated from a clinical sample collected in the same geographical area over the same period by our laboratory. Most of the HAV strains detected clustered with epidemic HAV-IA strains identified during the European hepatitis A outbreak that occurred in 2016-2017 affecting men who have sex with men (MSM). The detection of environmental HAV strains before and at the beginning of its spread amongst humans demonstrated that this outbreak could have been predicted by monitoring sewage samples. Moreover, conducting a genetic comparison between the HAV and EV strains identified in sewage and clinical samples may improve knowledge of viral epidemiology. EV and HAV molecular environmental surveillance may prove useful for identifying viral circulation and for issuing early warning alerts on possible outbreaks among the human population.
Collapse
Affiliation(s)
- Laura Pellegrinelli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy.
| | - Cristina Galli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Sandro Binda
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Valeria Primache
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Catia Tagliacarne
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Francesca Pizza
- MilanoDepur S.p.A, Depuratore di Milano Nosedo, Milan, Italy
| | - Roberto Mazzini
- MilanoDepur S.p.A, Depuratore di Milano Nosedo, Milan, Italy
| | - Elena Pariani
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Luisa Romanò
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| |
Collapse
|