1
|
Castoldi AF, Coja T, Lanzoni A, Machera K, Mohimont L, Nepal M, Recordati C, Crivellente F. Specific effects on liver relevant for performing a dietary cumulative risk assessment of pesticide residues. EFSA J 2025; 23:e9409. [PMID: 40330216 PMCID: PMC12050957 DOI: 10.2903/j.efsa.2025.9409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
According to the 'EFSA-SANTE Action Plan on Cumulative Risk Assessment for pesticides residues', EFSA initiated a retrospective cumulative risk assessment (CRA) of the effects of pesticide residues on the liver. For this CRA, EFSA identified the following liver-specific effects in accordance with the International Harmonisation of Nomenclature and Diagnostic Criteria (INHAND): (1) hypertrophy due to enzymatic induction, liver; (2) fatty change and/or phospholipidosis, hepatocellular; (3) degeneration/cell death, hepatocellular; (4) porphyria, hepatocellular, biliary duct; (5) cholestasis, hepatocellular, biliary duct; (6) preneoplastic and neoplastic changes, hepatocellular; (7) neoplastic changes, biliary duct. In addition, as gallbladder is part of the extrahepatic biliary system and can be affected by hepatic toxicity, the following specific effects in the gallbladder were defined: (1) erosion/ulceration, gallbladder (2) calculi, gallbladder and (3) neoplastic changes, gallbladder. Histopathology was considered as the most appropriate source of evidence together with the increase in relative liver weight, and a list of indicators was defined and will be used to collect information on these specific effects as included in the assessment reports of the different active substances used as plant protection products. The criteria for inclusion of active substances/metabolites into cumulative assessment groups (CAGs) were also defined, together with the hazard characterisation methodology and the lines of evidence for assessing CAG-membership probabilities. While primary indicators define the specific effect, secondary indicators and other endpoints (named ancillary endpoints) are considered not sufficiently informative to indicate a specific effect but are rather contributing to the overall evidence; these will be collected only for a limited number of substances (i.e. risk drivers based on hazard and exposure considerations) for determining the likelihood of the substances truly belonging to the CAGs (CAG-membership probabilities). Considering that it is not considered appropriate to establish CAGs for acute liver effects, CRAs on the liver will be only focused on chronic exposure. The process of data extraction and actual establishment of the CAGs is beyond the scope of this report. This part of the CRA process was outsourced and will be the subject of a separate report.
Collapse
|
2
|
Iovine N, Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. Simulation of the Long-Term Toxicity Towards Bobwhite Quail ( Colinus virginianus) by the Monte Carlo Method. J Xenobiot 2024; 15:3. [PMID: 39846535 PMCID: PMC11755432 DOI: 10.3390/jox15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
In this study, models for NOEL (No Observed Effect Level) and NOEC (No Observed Effect Concentration) related to long-term/reproduction toxicity of various organic pesticides are built up, evaluated, and compared with similar models proposed in the literature. The data have been obtained from the EFSA OpenFoodTox database, collecting only data for the Bobwhite quail (Colinus virginianus). Models have been developed using the CORAL-2023 program, which can be used to develop quantitative structure-property/activity relationships (QSPRs/QSARs) and the Monte Carlo method for the optimization of the model. The software provided a model which may be considered useful for the practice. The determination coefficient of the best models for the external validation set was 0.665.
Collapse
Affiliation(s)
| | - Alla P. Toropova
- Department of Environmental, Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (N.I.); (A.A.T.); (A.R.); (E.B.)
| | | | | | | |
Collapse
|
3
|
Donzelli G, Gehring R, Murugadoss S, Roos T, Schaffert A, Linzalone N. A critical review on the toxicological and epidemiological evidence integration for assessing human health risks to environmental chemical exposures. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0072. [PMID: 39679553 DOI: 10.1515/reveh-2024-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Toxicology and epidemiology are the two traditional public health scientific disciplines which can contribute to investigate harmful health effects of exposure to toxic substances. Several frameworks for integrating different lines of evidence were proposed since 2011, evolving based of the emergence of new methodologies and approaches. Through the comparison of various theoretical frameworks for evidence integration, we examined similarities, differences, strengths, and weaknesses to provide insights into potential directions for future research. We identified several key challenges of the integration approach to be applied to risk assessment. More specifically, collaboration within a multidisciplinary team of scientists, toxicologists, epidemiologists, and risk assessors, is strongly recommended to be aligned with key regulatory objectives and promote a harmonized approach. Moreover, literature search transparency and systematicity have to be ensured by following validated guidelines, developing parallel protocols for collecting epidemiological and toxicological evidence from various sources, including human, animal, and new approach methodologies (NAMs). Also, the adoption of tailored quality assessment tools is essential to grade the certainty in evidence. Lastly, we recommend the use of the Adverse Outcome Pathway framework to provide a structured understanding of toxicity mechanisms and allow the integration of human, animal, and NAMs data within a single framework.
Collapse
Affiliation(s)
- Gabriele Donzelli
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy
| | - Ronette Gehring
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sivakumar Murugadoss
- Scientific Direction of Chemical and Physical Health Risks, SCIENSANO, Brussels, Belgium
| | - Tom Roos
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alexandra Schaffert
- Institute of Medical Biochemistry, Medical University Innsbruck, Innsbruck, Austria
| | - Nunzia Linzalone
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy
| |
Collapse
|
4
|
Ledwith R, Stobernack T, Bergert A, Bahl A, Pink M, Haase A, Dumit VI. Towards characterization of cell culture conditions for reliable proteomic analysis: in vitro studies on A549, differentiated THP-1, and NR8383 cell lines. Arch Toxicol 2024; 98:4021-4031. [PMID: 39264451 PMCID: PMC11496344 DOI: 10.1007/s00204-024-03858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Proteomic investigations result in high dimensional datasets, but integration or comparison of different studies is hampered by high variances due to different experimental setups. In addition, cell culture conditions can have a huge impact on the outcome. This study systematically investigates the impact of experimental parameters on the proteomic profiles of commonly used cell lines-A549, differentiated THP-1 macrophage-like cells, and NR8383-for toxicity studies. The work focuses on analyzing the influence at the proteome level of cell culture setup involving different vessels, cell passage numbers, and post-differentiation harvesting time, aiming to improve the reliability of proteomic analyses for hazard assessment. Mass-spectrometry-based proteomics was utilized for accurate protein quantification by means of a label-free approach. Our results showed that significant proteome variations occur when cells are cultivated under different setups. Further analysis of these variations revealed their association to specific cellular pathways related to protein misfolding, oxidative stress, and proteasome activity. Conversely, the influence of cell passage numbers on the proteome is minor, suggesting a reliable range for conducting reproducible biological replicates. Notable, substantial proteome alterations occur over-time post-differentiation of dTHP-1 cells, particularly impacting pathways crucial for macrophage function. This finding is key for the interpretation of experimental results. These results highlight the need for standardized culture conditions in proteomic-based evaluations of treatment effects to ensure reliable results, a prerequisite for achieving regulatory acceptance of proteomics data.
Collapse
Affiliation(s)
- Rico Ledwith
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Tobias Stobernack
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Antje Bergert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Aileen Bahl
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Mario Pink
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Verónica I Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
5
|
Madl AK, Donnell MT, Covell LT. Synthetic vitreous fibers (SVFs): adverse outcome pathways (AOPs) and considerations for next generation new approach methods (NAMs). Crit Rev Toxicol 2024; 54:754-804. [PMID: 39287182 DOI: 10.1080/10408444.2024.2390020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Fiber dimension, durability/dissolution, and biopersistence are critical factors for the risk of fibrogenesis and carcinogenesis. In the modern era, to reduce, refine, and replace animals in toxicology research, the application of in vitro test methods is paramount for hazard evaluation and designing synthetic vitreous fibers (SVFs) for safe use. The objectives of this review are to: (1) summarize the international frameworks and acceptability criteria for implementation of new approach methods (NAMs), (2) evaluate the adverse outcome pathways (AOPs), key events (KEs), and key event relationships (KERs) for fiber-induced fibrogenesis and carcinogenesis in accordance with Organization for Economic Co-operation and Development (OECD) guidelines, (3) consider existing and emerging technologies for in silico and in vitro toxicity testing for the respiratory system and the ability to predict effects in vivo, (4) outline a recommended testing strategy for evaluating the hazard and safety of novel SVFs, and (5) reflect on methods needs for in vitro in vivo correlation (IVIVC) and predictive approaches for safety assessment of new SVFs. AOP frameworks following the conceptual model of the OECD were developed through an evaluation of available molecular and cellular initiating events, which lead to KEs and KERs in the development of fiber-induced fibrogenesis and carcinogenesis. AOP framework development included consideration of fiber physicochemical properties, respiratory deposition and clearance patterns, biosolubility, and biopersistence, as well as cellular, organ, and organism responses. Available data support that fiber AOPs begin with fiber physicochemical characteristics which influence fiber exposure and biosolubility and subsequent key initiating events are dependent on fiber biopersistence and reactivity. Key cellular events of pathogenic fibers include oxidative stress, chronic inflammation, and epithelial/fibroblast proliferation and differentiation, which ultimately lead to hyperplasia, metaplasia, and fibrosis/tumor formation. Available in vitro models (e.g. single-, multi-cellular, organ system) provide promising NAMs tools to evaluate these intermediate KEs. However, data on SVFs demonstrate that in vitro biosolubility is a reasonable predictor for downstream events of in vivo biopersistence and biological effects. In vitro SVF fiber dissolution rates >100 ng/cm2/hr (glass fibers in pH 7 and stone fibers in pH 4.5) and in vivo SVF fiber clearance half-life less than 40 or 50 days were not associated with fibrosis or tumors in animals. Long (fiber lengths >20 µm) biodurable and biopersistent fibers exceeding these fiber dissolution and clearance thresholds may pose a risk of fibrosis and cancer. In vitro fiber dissolution assays provide a promising avenue and potentially powerful tool to predict in vivo SVF fiber biopersistence, hazard, and health risk. NAMs for fibers (including SVFs) may involve a multi-factor in vitro approach leveraging in vitro dissolution data in complement with cellular- and tissue- based in vitro assays to predict health risk.
Collapse
Affiliation(s)
- Amy K Madl
- Valeo Sciences LLC, Ladera Ranch, CA, USA
| | | | | |
Collapse
|
6
|
Paege N, Feustel S, Marx-Stoelting P. Toxicological evaluation of microbial secondary metabolites in the context of European active substance approval for plant protection products. Environ Health 2024; 23:52. [PMID: 38835048 DOI: 10.1186/s12940-024-01092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Risk assessment (RA) of microbial secondary metabolites (SM) is part of the EU approval process for microbial active substances (AS) used in plant protection products (PPP). As the number of potentially produced microbial SM may be high for a certain microbial strain and existing information on the metabolites often are low, data gaps are frequently identified during the RA. Often, RA cannot conclusively clarify the toxicological relevance of the individual substances. This work presents data and RA conclusions on four metabolites, Beauvericin, 2,3-deepoxy-2,3-didehydro-rhizoxin (DDR), Leucinostatin A and Swainsonin in detail as examples for the challenging process of RA. To overcome the problem of incomplete assessment reports, RA of microbial AS for PPP is in need of new approaches. In view of the Next Generation Risk Assessment (NGRA), the combination of literature data, omic-methods, in vitro and in silico methods combined in adverse outcome pathways (AOPs) can be used for an efficient and targeted identification and assessment of metabolites of concern (MoC).
Collapse
Affiliation(s)
- Norman Paege
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Sabrina Feustel
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | |
Collapse
|
7
|
Bean TG, Beasley VR, Berny P, Eisenreich KM, Elliott JE, Eng ML, Fuchsman PC, Johnson MS, King MD, Mateo R, Meyer CB, Salice CJ, Rattner BA. Toxicological effects assessment for wildlife in the 21st century: Review of current methods and recommendations for a path forward. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:699-724. [PMID: 37259706 DOI: 10.1002/ieam.4795] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
Model species (e.g., granivorous gamebirds, waterfowl, passerines, domesticated rodents) have been used for decades in guideline laboratory tests to generate survival, growth, and reproductive data for prospective ecological risk assessments (ERAs) for birds and mammals, while officially adopted risk assessment schemes for amphibians and reptiles do not exist. There are recognized shortcomings of current in vivo methods as well as uncertainty around the extent to which species with different life histories (e.g., terrestrial amphibians, reptiles, bats) than these commonly used models are protected by existing ERA frameworks. Approaches other than validating additional animal models for testing are being developed, but the incorporation of such new approach methodologies (NAMs) into risk assessment frameworks will require robust validations against in vivo responses. This takes time, and the ability to extrapolate findings from nonanimal studies to organism- and population-level effects in terrestrial wildlife remains weak. Failure to adequately anticipate and predict hazards could have economic and potentially even legal consequences for regulators and product registrants. In order to be able to use fewer animals or replace them altogether in the long term, vertebrate use and whole organism data will be needed to provide data for NAM validation in the short term. Therefore, it is worth investing resources for potential updates to existing standard test guidelines used in the laboratory as well as addressing the need for clear guidance on the conduct of field studies. Herein, we review the potential for improving standard in vivo test methods and for advancing the use of field studies in wildlife risk assessment, as these tools will be needed in the foreseeable future. Integr Environ Assess Manag 2024;20:699-724. © 2023 His Majesty the King in Right of Canada and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | - Val R Beasley
- College of Veterinary Medicine, University of Illinois at Urbana, Champaign, Illinois, USA
| | | | - Karen M Eisenreich
- US Environmental Protection Agency, Washington, District of Columbia, USA
| | - John E Elliott
- Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Margaret L Eng
- Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada
| | | | - Mark S Johnson
- US Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, Maryland, USA
| | - Mason D King
- Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | | | - Barnett A Rattner
- US Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA
| |
Collapse
|
8
|
Pelkonen O, Abass K, Parra Morte JM, Panzarea M, Testai E, Rudaz S, Louisse J, Gundert-Remy U, Wolterink G, Jean-Lou CM D, Coecke S, Bernasconi C. Metabolites in the regulatory risk assessment of pesticides in the EU. FRONTIERS IN TOXICOLOGY 2023; 5:1304885. [PMID: 38188093 PMCID: PMC10770266 DOI: 10.3389/ftox.2023.1304885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
A large majority of chemicals is converted into metabolites through xenobiotic-metabolising enzymes. Metabolites may present a spectrum of characteristics varying from similar to vastly different compared with the parent compound in terms of both toxicokinetics and toxicodynamics. In the pesticide arena, the role of metabolism and metabolites is increasingly recognised as a significant factor particularly for the design and interpretation of mammalian toxicological studies and in the toxicity assessment of pesticide/metabolite-associated issues for hazard characterization and risk assessment purposes, including the role of metabolites as parts in various residues in ecotoxicological adversities. This is of particular relevance to pesticide metabolites that are unique to humans in comparison with metabolites found in in vitro or in vivo animal studies, but also to disproportionate metabolites (quantitative differences) between humans and mammalian species. Presence of unique or disproportionate metabolites may underlie potential toxicological concerns. This review aims to present the current state-of-the-art of comparative metabolism and metabolites in pesticide research for hazard and risk assessment, including One Health perspectives, and future research needs based on the experiences gained at the European Food Safety Authority.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
| | - Jochem Louisse
- EFSA, European Food Safety Authority, Parma, Italy
- Wageningen Food Safety Research (WFSR), Wageningen, Netherlands
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerrit Wolterink
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
9
|
Bernhard A, Poulsen R, Brun Hansen AM, Hansen M. Toxicometabolomics as a tool for next generation environmental risk assessment. EFSA J 2023; 21:e211005. [PMID: 38047121 PMCID: PMC10687767 DOI: 10.2903/j.efsa.2023.e211005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Traditionally applied methodology in environmental risk assessment (ERA) has fallen out of step with technological advancements and regulatory requirements, challenging effectiveness and accuracy of the assessments. Extensive efforts have been focused towards a transition to a more data-driven and mechanistically-based next generation risk assessment. Metabolomics can produce detailed and comprehensive molecular insight into affected biochemical processes. Combining metabolomics with environmental toxicology can help to understand the mechanisms and/or modes of action underlying toxicity of environmental pollutants and inform adverse outcome pathways, as well as facilitate identification of biomarkers to quantify effects and/or exposure. This Technical Report describes the activities and work performed within the frame of the European Food Risk Assessment Fellowship Programme (EU-FORA), implemented at the section 'Environmental Chemistry and Toxicology' at the Department of Environmental Science at Aarhus University in Denmark with synergies to an ongoing H2020 RIA project 'EndocRine Guideline Optimisation' (ERGO). In accordance with the 'training by doing' principles of the EU-FORA, the fellowship project combined the exploration of the status of scientific discussion on methodology in ERA through literature study with hands-on training, using the metabolomics analysis pipeline established at Aarhus University. For the hands-on training, an amphibian metamorphosis assay (OECD test no.231) was used as a proof-of-concept toxicometabolomics study case. Both a targeted biomarker - and an untargeted metabolomics approach was applied.
Collapse
Affiliation(s)
| | - Rikke Poulsen
- Section of Environmental Chemistry and Toxicology, Department of Environmental ScienceAarhus UniversityDenmark
| | - Anna M Brun Hansen
- Section of Environmental Chemistry and Toxicology, Department of Environmental ScienceAarhus UniversityDenmark
| | - Martin Hansen
- Section of Environmental Chemistry and Toxicology, Department of Environmental ScienceAarhus UniversityDenmark
| |
Collapse
|
10
|
Doak SH, Andreoli C, Burgum MJ, Chaudhry Q, Bleeker EAJ, Bossa C, Domenech J, Drobne D, Fessard V, Jeliazkova N, Longhin E, Rundén-Pran E, Stępnik M, El Yamani N, Catalán J, Dusinska M. Current status and future challenges of genotoxicity OECD Test Guidelines for nanomaterials: a workshop report. Mutagenesis 2023; 38:183-191. [PMID: 37234002 PMCID: PMC10448853 DOI: 10.1093/mutage/gead017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Genotoxicity testing for nanomaterials remains challenging as standard testing approaches require some adaptation, and further development of nano-specific OECD Test Guidelines (TGs) and Guidance Documents (GDs) are needed. However, the field of genotoxicology continues to progress and new approach methodologies (NAMs) are being developed that could provide relevant information on the range of mechanisms of genotoxic action that may be imparted by nanomaterials. There is a recognition of the need for implementation of new and/or adapted OECD TGs, new OECD GDs, and utilization of NAMs within a genotoxicity testing framework for nanomaterials. As such, the requirements to apply new experimental approaches and data for genotoxicity assessment of nanomaterials in a regulatory context is neither clear, nor used in practice. Thus, an international workshop with representatives from regulatory agencies, industry, government, and academic scientists was convened to discuss these issues. The expert discussion highlighted the current deficiencies that exist in standard testing approaches within exposure regimes, insufficient physicochemical characterization, lack of demonstration of cell or tissue uptake and internalization, and limitations in the coverage of genotoxic modes of action. Regarding the latter aspect, a consensus was reached on the importance of using NAMs to support the genotoxicity assessment of nanomaterials. Also highlighted was the need for close engagement between scientists and regulators to (i) provide clarity on the regulatory needs, (ii) improve the acceptance and use of NAM-generated data, and (iii) define how NAMs may be used as part of weight of evidence approaches for use in regulatory risk assessments.
Collapse
Affiliation(s)
- Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Singelton Park, Swansea, SA2 8PP Wales, United Kingdom
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michael J Burgum
- Institute of Life Science, Swansea University Medical School, Singelton Park, Swansea, SA2 8PP Wales, United Kingdom
| | - Qasim Chaudhry
- University of Chester, Parkgate Road, Chester, United Kingdom
| | - Eric A J Bleeker
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Cecilia Bossa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecan pot 111, 1000 Ljubljana, Slovenia
| | - Valérie Fessard
- ANSES French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10b rue Claude Bourgelat, Fougères 35306, France
| | | | - Eleonora Longhin
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | | | - Naouale El Yamani
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
- Department of Anatomy, Embryology, and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| |
Collapse
|