1
|
Driscoll J, Gondaliya P, Zinn DA, Jain R, Yan IK, Dong H, Patel T. Using aptamers for targeted delivery of RNA therapies. Mol Ther 2025; 33:1344-1367. [PMID: 40045577 PMCID: PMC11997499 DOI: 10.1016/j.ymthe.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025] Open
Abstract
RNA-based treatments that can silence, introduce, or restore gene expression to target human diseases are emerging as a new class of therapeutics. Despite their potential for use in broad applications, their clinical translation has been hampered by a need for delivery to specific cells and tissues. Cell targeting based on the use of aptamers provides an approach for improving their delivery to the desired sites of action. Aptamers are nucleic acid oligonucleotides with structural conformations that provide a robust capacity for the recognition of cell surface molecules and that can be used for directed targeting. Aptamers can be directly conjugated to therapeutic RNA molecules, in the form of aptamer-oligonucleotide chimeras, or incorporated into nanoparticles used as vehicles for the delivery of these therapeutics. Herein, we discuss the use of aptamers for cell-directed RNA therapies, provide an overview of different types of aptamer-targeting RNA therapeutics, and review examples of their therapeutic applications. Challenges associated with manufacturing and scaling up production, and key considerations for their clinical implementation, are also outlined.
Collapse
Affiliation(s)
- Julia Driscoll
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Piyush Gondaliya
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Dylan A Zinn
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Rupesh Jain
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Irene K Yan
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Narwade M, Haldar N, Samanta R, Pawar A, Gajbhiye V, Gajbhiye KR. α vβ 3 integrin aptamer functionalized pH-responsive lipid polymer hybrid nanoparticles for targeted co-delivery of paclitaxel and tamoxifen. Int J Biol Macromol 2025; 306:141754. [PMID: 40049497 DOI: 10.1016/j.ijbiomac.2025.141754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest type due to its aggressive behavior, high recurrence, metastatic, and mortality rates. This study was aimed at the targeted co-delivery of paclitaxel (PTX) and tamoxifen (TMF) via lipid polymer hybrid nanoparticles (LPHNPs) for treating TNBC. Here, we conjugated αvβ3 integrin aptamer over LPHNPs for targeting TNBC cells. The aptamer-conjugated LPHNPs showed significantly higher uptake in 4 T1 cells than non-targeted LPHNPs. The PTX + TMX co-loaded targeted LPHNPs have cell viabilities of 5.9 ± 0.7 and 7.8 ± 0.6 % in 4 T1 and MDA-MB-231 cells, respectively, in 48 h. The cell viabilities of PTX + TMX co-loaded non-targeted LPHNPs and free PTX + TMX were 17.27 ± 1.56 and 24.31 ± 0.81 % in 4 T1 cells and 16.07 ± 0.14 and 20.15 ± 1.11 % in MDA-MB-231 cells, respectively, in 48 h. Flow cytometry indicated that targeted LPHNP-mediated PTX + TMF delivery was considerably more efficient (~31 %) in inducing apoptosis than PTX + TMF co-loaded non-targeted LPHNPs (~21 %) and free PTX + TMF (~13 %). The anti-cancer efficiency was better when PTX and TMF were delivered together rather than separately. The cytotoxicity assessment in the 3D cell culture demonstrated higher anti-cancer effectiveness of aptamer-conjugated co-loaded LPHNPs, confirmed by significantly inducing cell death. Thus, the results concluded that PTX and TMF-loaded αvβ3 integrin aptamer conjugated LPHNPs have tremendous potential for treating TNBC.
Collapse
Affiliation(s)
- Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Niladri Haldar
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Rajkumar Samanta
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| | - Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India.
| |
Collapse
|
3
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
4
|
Xue R, Pan Y, Xia L, Li J. Non-viral vectors combined delivery of siRNA and anti-cancer drugs to reverse tumor multidrug resistance. Biomed Pharmacother 2024; 178:117119. [PMID: 39142247 DOI: 10.1016/j.biopha.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the main reasons for the failure of chemotherapy. Multidrug resistance refers to the cross-resistance of tumor cells to multiple antitumor drugs with different structures and mechanisms of action. Current strategies to reverse multidrug resistance in tumors include MDR inhibitors and RNAi technology. siRNA is a small molecule RNA that is widely used in RNAi technology and has the characteristics of being prepared in large quantities and chemically modified. However, siRNA is susceptible to degradation in vivo. The effect of siRNA therapy alone is not ideal, so siRNA and anticancer drugs are administered in combination to reverse the MDR of tumors. Non-viral vectors are now commonly used to deliver siRNA and anticancer drugs to tumor sites. This article will review the progress of siRNA and chemotherapeutic drug delivery systems and their mechanisms for reversing multidrug resistance.
Collapse
Affiliation(s)
- Renkai Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanzhu Pan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
5
|
Soomherun N, Kreua-Ongarjnukool N, Niyomthai ST, Chumnanvej S. Lipid-Polymer Hybrid Nanoparticles Synthesized via Lipid-Based Surface Engineering for a robust drug delivery platform. Colloids Surf B Biointerfaces 2024; 237:113858. [PMID: 38547797 DOI: 10.1016/j.colsurfb.2024.113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Herein, lipid-polymer core-shell hybrid nanoparticles composed of poly(D,L-lactic-co-glycolic acid) (PLGA)/lecithin (PLNs) were synthesized through lipid-based surface engineering. Lipids were absorbed onto the surface of the PLGA core to enhance the advantages of polymeric nanoparticles and liposomes. The amounts of lipids and encapsulation of the drug nicardipine hydrochloride (NCH) in the PLNs were studied. NCH-loaded PLNs (NCH-PLNs) were produced in high yield (66%) with a high encapsulation efficiency (92%) and a size of 176 nm. The mass of phosphorus (P) on the NCH-PLN surface was qualitatively and quantitatively investigated using X-ray fluorescence spectroscopy, and lecithin addition increased the P mass percentage due to the phosphate group (PO43-) in its structure. These data confirmed the lipid-based surface engineering of NCH-PLNs. The zeta potential of NCH-PLN exceeded -30 mV, ensuring colloidal stability, and preventing precipitation through electrostatic stabilization. In vitro, NCH was continuously and slowly released from NCH-PLNs over 16 days. Furthermore, PSVK1 cells exhibited high viability after treatment with NCH-PLNs, indicating favorable cytocompatibility. After comparing various mathematical equations of drug release kinetics, the data best fit the Korsmeyer-Peppas model with R2 values of 0.989, 0.990, and 0.982 for 1.0, 3.0, and 5.0 mg/mL lecithin, respectively. The release exponents obtained ranged from 0.480 to 0.505, suggesting anomalous transport release. Thus, NCH-PLNs have potential as a robust drug delivery platform for the controlled administration of NCH, particularly for vasodilation during neurosurgery.
Collapse
Affiliation(s)
- Nopparuj Soomherun
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narumol Kreua-Ongarjnukool
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
| | - Saowapa Thumsing Niyomthai
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Sorayouth Chumnanvej
- Surgery Department, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
6
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
7
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Fan R, Tao X, Zhai X, Zhu Y, Li Y, Chen Y, Dong D, Yang S, Lv L. Application of aptamer-drug delivery system in the therapy of breast cancer. Biomed Pharmacother 2023; 161:114444. [PMID: 36857912 DOI: 10.1016/j.biopha.2023.114444] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Despite significant treatment advances, breast cancer remains the leading cause of cancer death in women. From the current treatment situation, in addition to developing chemoresistant tumours, distant organ metastasis, and recurrences, patients with breast cancer often have a poor prognosis. Aptamers as "chemical antibodies" may be a way to resolve this dilemma. Aptamers are single-stranded, non-coding oligonucleotides (DNA or RNA), resulting their many advantages, including stability for long-term storage, simplicity of synthesis and function, and low immunogenicity, a high degree of specificity and antidote. Aptamers have gained popularity as a method for diagnosing and treating specific tumors in recent years. This article introduces the application of ten different aptamer delivery systems in the treatment and diagnosis of breast cancer, and systematically reviews their latest research progress in breast cancer treatment and diagnosis. It provides a new direction for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Rui Fan
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunming Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release 2022; 352:1024-1047. [PMID: 36379278 DOI: 10.1016/j.jconrel.2022.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer is the most prevalent non-cutaneous malignancy in women, with greater than a million new cases every year. In the last decennium, numerous diagnostic and treatment approaches have been enormously studied for Breast cancer. Among the different approaches, nanotechnology has appeared as a promising approach in preclinical and clinical studies for early diagnosis of primary tumors and metastases and eradicating tumor cells. Each of these nanocarriers has its particular advantages and drawbacks. Combining two or more than two constituents in a single nanocarrier system leads to the generation of novel multifunctional Hybrid Nanocarriers with improved structural and biological properties. These novel Hybrid Nanocarriers have the capability to overcome the drawbacks of individual constituents while having the advantages of those components. Various hybrid nanocarriers such as lipid polymer hybrid nanoparticles, inorganic hybrid nanoparticles, metal-organic hybrid nanoparticles, and hybrid carbon nanocarriers are utilized for the diagnosis and treatment of various cancers. Certainly, Hybrid Nanocarriers have the capability to encapsulate multiple cargos, targeting agents, enhancement in encapsulation, stability, circulation time, and structural disintegration compared to non-hybrid nanocarriers. Many studies have been conducted to investigate the utilization of Hybrid nanocarriers in breast cancer for imaging platforms, photothermal and photodynamic therapy, chemotherapy, gene therapy, and combinational therapy. In this review, we mainly discussed in detailed about of preparation techniques and toxicological considerations of hybrid nanoparticles. This review also discussed the role of hybrid nanocarriers as a diagnostic and therapeutic agent for the treatment of breast cancer along with alternative treatment approaches apart from chemotherapy including photothermal and photodynamic therapy, gene therapy, and combinational therapy.
Collapse
Affiliation(s)
- Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aare Mounika
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anuradha Urati
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Khatri
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Dhanya CR, Mary AS, Madhavan M. Aptamer-siRNA chimeras: Promising tools for targeting HER2 signaling in cancer. Chem Biol Drug Des 2022; 101:1162-1180. [PMID: 36099164 DOI: 10.1111/cbdd.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
RNA interference is a transformative approach and has great potential in the development of novel and more efficient cancer therapeutics. Immense prospects exist in the silencing of HER2 and its downstream genes which are overexpressed in many cancers, through exogenously delivered siRNA. However, there is still a long way to exploit the full potential and versatility of siRNA therapeutics due to the challenges associated with the stability and delivery of siRNA targeted to specific sites. Aptamers offer several advantages as a vehicle for siRNA delivery, over other carriers such as antibodies. In this review, we discuss the progress made in the development and applications of aptamer-siRNA chimeras in HER2 targeting and gene silencing. A schematic workflow is also provided which will provide ample insight for all those researchers who are new to this field. Also, we think that a mechanistic understanding of the HER2 signaling pathway is crucial in designing extensive investigations aimed at the silencing of a wider array of genes. This review is expected to stimulate more research on aptamer-siRNA chimeras targeted against HER2 which might arm us with potential effective therapeutic interventions for the management of cancer.
Collapse
Affiliation(s)
- C R Dhanya
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, India
| | - Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
13
|
Huber HF, Jaberi-Douraki M, DeVader S, Aparicio-Lopez C, Nava-Chavez J, Xu X, Millagaha Gedara NI, Gaudreault NN, Delong RK. Targeting SARS-CoV-2 Variants with Nucleic Acid Therapeutic Nanoparticle Conjugates. Pharmaceuticals (Basel) 2021; 14:1012. [PMID: 34681236 PMCID: PMC8539335 DOI: 10.3390/ph14101012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
The emergence of SARS-CoV-2 variants is cause for concern, because these may become resistant to current vaccines and antiviral drugs in development. Current drugs target viral proteins, resulting in a critical need for RNA-targeted nanomedicines. To address this, a comparative analysis of SARS-CoV-2 variants was performed. Several highly conserved sites were identified, of which the most noteworthy is a partial homopurine palindrome site with >99% conservation within the coding region. This sequence was compared among recently emerged, highly infectious SARS-CoV-2 variants. Conservation of the site was maintained among these emerging variants, further contributing to its potential as a regulatory target site for SARS-CoV-2. RNAfold was used to predict the structures of the highly conserved sites, with some resulting structures being common among coronaviridae. An RNA-level regulatory map of the conserved regions of SARS-CoV-2 was produced based on the predicted structures, with each representing potential target sites for antisense oligonucleotides, triplex-forming oligomers, and aptamers. Additionally, homopurine/homopyrimidine sequences within the viral genome were identified. These sequences also demonstrate appropriate target sites for antisense oligonucleotides and triplex-forming oligonucleotides. An experimental strategy to investigate these is summarized along with potential nanoparticle types for delivery, and the advantages and disadvantages of each are discussed.
Collapse
Affiliation(s)
- Hanah F. Huber
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| | - Majid Jaberi-Douraki
- 1DATA Consortium and Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA; (M.J.-D.); (X.X.); (N.I.M.G.)
| | - Sarah DeVader
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| | - Cesar Aparicio-Lopez
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| | - Juliet Nava-Chavez
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| | - Xuan Xu
- 1DATA Consortium and Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA; (M.J.-D.); (X.X.); (N.I.M.G.)
| | - Nuwan Indika Millagaha Gedara
- 1DATA Consortium and Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA; (M.J.-D.); (X.X.); (N.I.M.G.)
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Robert K. Delong
- Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (H.F.H.); (S.D.); (C.A.-L.); (J.N.-C.)
| |
Collapse
|
14
|
Ray RM, Hansen AH, Taskova M, Jandl B, Hansen J, Soemardy C, Morris KV, Astakhova K. Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides. Beilstein J Org Chem 2021; 17:891-907. [PMID: 33981364 PMCID: PMC8093553 DOI: 10.3762/bjoc.17.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 01/28/2023] Open
Abstract
Lipid nanoparticles (LNPs) constitute a facile and scalable approach for delivery of payloads to human cells. LNPs are relatively immunologically inert and can be produced in a cost effective and scalable manner. However, targeting and delivery of LNPs across the blood–brain barrier (BBB) has proven challenging. In an effort to target LNPs composed of an ionizable cationic lipid (DLin-MC3-DMA), cholesterol, the phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG 2000) to particular cell types, as well as to generate LNPs that can cross the BBB, we developed and assessed two approaches. The first was centered on the BBB-penetrating trans-activator of transcription (Tat) peptide or the peptide T7, and the other on RNA aptamers targeted to glycoprotein gp160 from human immunodeficiency virus (HIV) or C-C chemokine receptor type 5 (CCR5), a HIV-1 coreceptor. We report herein a CCR5-selective RNA aptamer that acts to facilitate entry through a simplified BBB model and that drives the uptake of LNPs into CCR5-expressing cells, while the gp160 aptamer did not. We further observed that the addition of cell-penetrating peptides, Tat and T7, did not increase BBB penetration above the aptamer-loaded LNPs alone. Moreover, we found that these targeted LNPs exhibit low immunogenic and low toxic profiles and that targeted LNPs can traverse the BBB to potentially deliver drugs into the target tissue. This approach highlights the usefulness of aptamer-loaded LNPs to increase target cell specificity and potentially deliverability of central-nervous-system-active RNAi therapeutics across the BBB.
Collapse
Affiliation(s)
- Roslyn M Ray
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | | | - Maria Taskova
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard Jandl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jonas Hansen
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Citra Soemardy
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Kevin V Morris
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America.,School of Medical Sciences, Griffith University, Gold Coast, Australia 4222.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
15
|
Khot VM, Salunkhe AB, Pricl S, Bauer J, Thorat ND, Townley H. Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov Today 2020; 26:724-739. [PMID: 33359624 DOI: 10.1016/j.drudis.2020.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Cancer cell resistance to chemotherapeutics (chemoresistance) poses a significant clinical challenge that oncology research seeks to understand and overcome. Multiple anticancer drugs and targeting agents can be incorporated in nanomedicines, in addition to different treatment modalities, forming a single nanoplatform that can be used to address tumor chemoresistance. Nanomedicine-driven molecular assemblies using nucleic acids, small interfering (si)RNAs, miRNAs, and aptamers in combination with stimuli-responsive therapy improve the pharmacokinetic (PK) profile of the drugs and enhance their accumulation in tumors and, thus, therapeutic outcomes. In this review, we highlight nanomedicine-driven molecular targeting and therapy combination used to improve the 3Rs (right place, right time, and right dose) for chemoresistant tumor therapies.
Collapse
Affiliation(s)
- Vishwajeet M Khot
- Department of Medical Physics, Center for Interdisciplinary Research, D.Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416006, MS, India.
| | | | - Sabrina Pricl
- MolBNL@UniTS-DEA University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-137 Lodz, Poland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Technology, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| | - Nanasaheb D Thorat
- Nuffield Department of Women's & Reproductive Health, Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Department of Engineering Science, University of Oxford, South Parks Road, Oxford, OX1 3PJ, UK.
| | - Helen Townley
- Nuffield Department of Women's & Reproductive Health, Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Department of Engineering Science, University of Oxford, South Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
16
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
17
|
Fu Z, Xiang J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int J Mol Sci 2020; 21:ijms21239123. [PMID: 33266216 PMCID: PMC7730239 DOI: 10.3390/ijms21239123] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Using nanoparticles to carry and delivery anticancer drugs holds much promise in cancer therapy, but nanoparticles per se are lacking specificity. Active targeting, that is, using specific ligands to functionalize nanoparticles, is attracting much attention in recent years. Aptamers, with their several favorable features like high specificity and affinity, small size, very low immunogenicity, relatively low cost for production, and easiness to store, are one of the best candidates for the specific ligands of nanoparticle functionalization. This review discusses the benefits and challenges of using aptamers to functionalize nanoparticles for active targeting and especially presents nearly all of the published works that address the topic of using aptamers to functionalize nanoparticles for targeted drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Zhaoying Fu
- Institute of Molecular Biology and Immunology, College of Medicine, Yanan University, Yanan 716000, China
- Correspondence: (Z.F.); (J.X.)
| | - Jim Xiang
- Division of Oncology, University of Saskatchewan, Saskatoon, SK S7N 4H4, Canada
- Correspondence: (Z.F.); (J.X.)
| |
Collapse
|