1
|
Kaur H, Singh S, Rode S, Chaudhary PK, Khan NA, Ramamurthy PC, Gupta DN, Kumar R, Das J, Sharma AK. Fabrication and characterization of polyvinyl alcohol-chitosan composite nanofibers for carboxylesterase immobilization to enhance the stability of the enzyme. Sci Rep 2024; 14:19615. [PMID: 39179653 PMCID: PMC11344031 DOI: 10.1038/s41598-024-67913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/26/2024] Open
Abstract
Electrospinning stands out as a flexible and viable method, presenting designed nanoscale materials with customized properties. This research demonstrates the immobilization of carboxylesterase protein Ha006a, reported for its adequacy in pesticide bioremediation by utilizing the electrospinning strategy. This strategy was utilized to create nanofibers by incorporating variable mixtures of biodegradable and cost-effective polyvinyl alcohol (PVA)-chitosan (CS) nanofiber solution (PVA100, PVA96, PVA94, PVA92 and PVA90). All the mixtures were electrospun at a reliable voltage of 21 kV, maintaining a gap of 12 cm from the nozzle. The Ha006a, sourced from Helicoverpa armigera, was consolidated into the optimized PVA90 polymer mixture. The electrospun nanofibers experienced comprehensive characterization utilizing distinctive microscopy and spectroscopy procedures counting FESEM, TGA, XRD and FTIR. The comparative investigation of the esterase property, ideal parameters and stability of the unbound and bound/immobilized Ha006a was scrutinized. The results uncovered an essential elevation in the ideal conditions of enzyme activity post-immobilization. The PVA-CS control nanofiber and Ha006a-PVA-CS showed a smooth structure, including an average breadth of around 170.5 ± 44.2 and 222.5 ± 66.5 nm, respectively. The enzyme-immobilized nanofibers displayed upgraded stability and comprehensive characterization of the nanofiber, which guaranteed genuineness and reproducibility, contributing to its potential as a potent device for bioremediation applications. This investigation opens the way for the manufacture of pesticide-resistant insect enzyme-based nanofibers, unlocking their potential for assorted applications, counting pesticide remediation and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pankaj Kumar Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rakesh Kumar
- Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur, Maharashtra, 440010, India
| | - Joy Das
- Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur, Maharashtra, 440010, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
2
|
Kaptan Usul S, Binay B, Soydan AM, Aslan A. A newly synthesized magnetic nanoparticle coated with glycidyl methacrylate monomer and 1,2,4-Triazole: Immobilization of α-Amylase from Bacillus licheniformis for more reuse, stability, and activity in the presence of H 2O 2. Bioorg Chem 2024; 143:107068. [PMID: 38181659 DOI: 10.1016/j.bioorg.2023.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024]
Abstract
α-Amylase is a secretory enzyme commonly found in nature. The α-Amylase enzyme catalyzes the hydrolysis of α-D-(1,4)-glucosidic bonds in starch, glycogen, and polysaccharides. The chemical characterization of the composite carrier and the immobilized enzyme was performed, and the accuracy of the immobilization was confirmed by FTIR, SEM, and EDS analyses. The X-ray diffraction (XRD) analysis indicates that the magnetic nanoparticle retained its magnetic properties following the modification process. Based on the Thermogravimetric Analysis (TGA) outcomes, it was evident that the structural integrity of the FPT nanocomposite remained unchanged at 200°C. The optimal pH was determined to be 5.5, and no alteration was observed following the immobilization process. Purified α-amylases usually lose their activity rapidly above 50°C. In this study, Bacillus licheniformis α-Amylase enzyme was covalently immobilized on the newly synthesized magnetic composite carrier having more azole functional group. For novelty-designed immobilized enzymes, while there is no change in the pH and optimum operating temperature of the enzyme with immobilization, two essential advantages are provided to reduce enzyme costs: the storage stability and reusability are increased. Furthermore, our immobilization technique enhanced enzyme stability when comparing our immobilized enzyme with the reference enzyme in industrial applications. The activity of the immobilized enzyme was higher in presence of 1-3% H2O2.
Collapse
Affiliation(s)
- Sedef Kaptan Usul
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey; BAUZYME Biotechnology Co., Gebze Technical University Technopark, Gebze, 41400 Kocaeli, Turkey.
| | - Ali Murat Soydan
- Institute of Energy Technologies, Gebze Technical University, Kocaeli, Turkey.
| | - Ayşe Aslan
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey; Institute of Energy Technologies, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
3
|
The application of conventional or magnetic materials to support immobilization of amylolytic enzymes for batch and continuous operation of starch hydrolysis processes. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
In the production of ethanol, starches are converted into reducing sugars by liquefaction and saccharification processes, which mainly use soluble amylases. These processes are considered wasteful operations as operations to recover the enzymes are not practical economically so immobilizations of amylases to perform both processes appear to be a promising way to obtain more stable and reusable enzymes, to lower costs of enzymatic conversions, and to reduce enzymes degradation/contamination. Although many reviews on enzyme immobilizations are found, they only discuss immobilizations of α-amylase immobilizations on nanoparticles, but other amylases and support types are not well informed or poorly stated. As the knowledge of the developed supports for most amylase immobilizations being used in starch hydrolysis is important, a review describing about their preparations, characteristics, and applications is herewith presented. Based on the results, two major groups were discovered in the last 20 years, which include conventional and magnetic-based supports. Furthermore, several strategies for preparation and immobilization processes, which are more advanced than the previous generation, were also revealed. Although most of the starch hydrolysis processes were conducted in batches, opportunities to develop continuous reactors are offered. However, the continuous operations are difficult to be employed by magnetic-based amylases.
Collapse
|
4
|
Gupta N, Beliya E, Paul JS, Jadhav S. Nanoarmoured α-amylase: A route leading to exceptional stability, catalysis and reusability for industrial applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Kikani BA, Suthar S, Joshi D. Nanomaterials: An efficient support to immobilize microbial α–amylases for improved starch hydrolysis. STARCH-STARKE 2022. [DOI: 10.1002/star.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bhavtosh A. Kikani
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Sadikhusain Suthar
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| | - Disha Joshi
- P. D. Patel Institute of Applied Sciences Charotar University of Science and Technology CHARUSAT Campus Changa – 388 421 Gujarat India
| |
Collapse
|
6
|
Duru Kamaci U, Peksel A. Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity. Int J Biol Macromol 2020; 164:3315-3322. [DOI: 10.1016/j.ijbiomac.2020.08.226] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/18/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
|
7
|
Ureta MM, Martins GN, Figueira O, Pires PF, Castilho PC, Gomez-Zavaglia A. Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Crit Rev Food Sci Nutr 2020; 61:2659-2690. [PMID: 32590905 DOI: 10.1080/10408398.2020.1783639] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly demanding conditions of industrial processes may lower the stability and affect the activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to promote stabilization and easy removal of enzymes for their reusability. The aim of this review is to go through the principal immobilization strategies addressed to achieve optimal industrial processes with special care on those reported for two types of enzymes: β-galactosidases and fructosyltransferases. The main methods used to immobilize these two enzymes are adsorption, entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them having pros and cons. Regarding the support, it should be cost-effective, assure the reusability and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided showed that the type of enzyme, its origin, its purity, together with the type of immobilization method and the support will affect the performance during the enzymatic synthesis. Enzymes' immobilization involves interdisciplinary knowledge including enzymology, nanotechnology, molecular dynamics, cellular physiology and process design. The increasing availability of facilities has opened a variety of possibilities to define strategies to optimize the activity and re-usability of β-galactosidases and fructosyltransferases, but there is still great place for innovative developments.
Collapse
Affiliation(s)
- Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | | | - Onofre Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Filipe Pires
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | | | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|