1
|
Higuchi T, Chen X, Scheifele M, Fischer M, Clauss S, Klimek K, Werner RA. 18F labeled myocardial perfusion PET: New precision in cardiac imaging. Trends Cardiovasc Med 2025:S1050-1738(25)00049-0. [PMID: 40233888 DOI: 10.1016/j.tcm.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
The rising global burden of coronary artery disease (CAD) underscores the need for advanced diagnostic tools. While single-photon emission computed tomography (SPECT) has been the cornerstone for myocardial perfusion imaging (MPI), it is increasingly being supplemented by positron emission tomography (PET) due to superior spatial resolution, sensitivity, and the ability to quantify myocardial blood flow. However, current PET tracers, including Rubidium-82, 13N-Ammonia, and 15O-Water, face limitations due to their short half-lives and logistical challenges. The advent of 18F labeled PET tracers, such as Flurpiridaz F18, promises a new era in cardiac imaging by offering a longer half-life (110 minutes), compatibility with exercise stress testing, and high diagnostic accuracy. This review explores the current landscape of MPI, evaluates the clinical performance of novel 18F tracers, and discusses their transformative potential in expanding access to PET imaging and improving CAD diagnostics.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg, Germany; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Maximilian Fischer
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Konrad Klimek
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
2
|
Nye JA, Tipnis SV. Addressing motion in the estimation of myocardial blood flow with [F-18] flurpiridaz positron emission tomography. J Nucl Cardiol 2025; 44:102123. [PMID: 39955136 DOI: 10.1016/j.nuclcard.2024.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Affiliation(s)
- Jonathon A Nye
- Medical University of South Carolina, Charleston, SC, USA.
| | | |
Collapse
|
3
|
Choueiry J, Mistry NP, Beanlands RSB, deKemp RA. Automated dynamic motion correction improves repeatability and reproducibility of myocardial blood flow quantification with rubidium-82 PET imaging. J Nucl Cardiol 2023; 30:1133-1146. [PMID: 36460862 DOI: 10.1007/s12350-022-03134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Patient motion reduces the accuracy of PET myocardial blood flow (MBF) measurements. This study evaluated the effect of automatic motion correction on test-retest repeatability and inter-observer variability in a clinically relevant population. METHODS Patients with known or suspected CAD underwent repeat rest 82Rb PET scans within minutes as part of their scheduled rest-stress perfusion study. Two trained observers evaluated the presence of heart motion in each scan. Global LV and per-vessel MBF were computed from the dynamic rest images before and after automatic motion correction. Test-retest and inter-observer variability were assessed using intra-class correlation and Bland-Altman analysis. RESULTS 140 pairs of test-retest scans were included, with visual motion noted in 18%. Motion correction decreased the global MBF values by 3.5% (0.80 ± 0.24 vs 0.82 ± 0.25 mL⋅min-1⋅g-1; P < 0.001) suggesting that the blood input function was underestimated in cases with patient motion. Test-retest repeatability of global MBF improved by 9.7% (0.25 vs 0.28 mL⋅min-1⋅g-1; P < 0.001) and inter-observer repeatability was improved by 7.1% (0.073 vs 0.079 mL⋅min-1⋅g-1; P = 0.012). There was a marked impact on both test-retest repeatability as well as inter-observer repeatability in the LCX territory, with improvements of 16.5% (0.30 vs 0.36 mL⋅min-1⋅g-1; P < 0.0000) and 18.4% (0.13 vs 0.16 mL⋅min-1⋅g-1; P < 0.001), respectively. CONCLUSION Automatic motion correction improved test-retest repeatability and reduced differences between observers.
Collapse
Affiliation(s)
- Justen Choueiry
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Neel P Mistry
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Rob S B Beanlands
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A deKemp
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada.
- Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
4
|
Han Y, Ahmed AI, Hayden C, Jung AK, Saad JM, Spottiswoode B, Nabi F, Al-Mallah MH. Change in positron emission tomography perfusion imaging quality with a data-driven motion correction algorithm. J Nucl Cardiol 2022; 29:3426-3431. [PMID: 35275348 DOI: 10.1007/s12350-021-02902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Cardiac motion frequently reduces the interpretability of PET images. This study utilized a prototype data-driven motion correction (DDMC) algorithm to generate corrected images and compare DDMC images with non-corrected images (NMC) to evaluate image quality and change of perfusion defect size and severity. METHODS Rest and stress images with NMC and DDMC from 40 consecutive patients with motion were rated by 2 blinded investigators on a 4-point visual ordinal scale (0: minimal motion; 1: mild motion; 2: moderate motion; 3: severe motion/uninterpretable). Motion was also quantified using Dwell Fraction, which is the fraction of time the motion vector shows the heart to be within 6 mm of the corrected position and was derived from listmode data of NMC images. RESULTS Minimal motion was seen in 15% of patients, while 40%, 30%, and 15% of patients had mild moderate and severe motion, respectively. All corrected images showed an improvement in quality and were interpretable after processing. This was confirmed by a significant correlation (Spearman's correlation coefficient 0.626, P < .001) between machine measurement of motion quantification and physician interpretation. CONCLUSION The novel DDMC algorithm improved quality of cardiac PET images with motion. Correlation between machine measurement of motion quantification and physician interpretation was significant.
Collapse
Affiliation(s)
- Yushui Han
- Houston Methodist Debakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower-Suite 1801, Houston, TX, 77030, USA
| | - Ahmed Ibrahim Ahmed
- Houston Methodist Debakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower-Suite 1801, Houston, TX, 77030, USA
| | | | - Aaron K Jung
- Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
| | - Jean Michel Saad
- Houston Methodist Debakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower-Suite 1801, Houston, TX, 77030, USA
| | | | - Faisal Nabi
- Houston Methodist Debakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower-Suite 1801, Houston, TX, 77030, USA
| | - Mouaz H Al-Mallah
- Houston Methodist Debakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower-Suite 1801, Houston, TX, 77030, USA.
- Medicine and Cardiology, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
5
|
Armstrong IS, Memmott MJ, Hayden C, Arumugam P. The prevalence of image degradation due to motion in rest-stress rubidium-82 imaging on a SiPM PET-CT system. J Nucl Cardiol 2022; 29:1596-1606. [PMID: 33608851 DOI: 10.1007/s12350-021-02531-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Motion of the heart is known to affect image quality in cardiac PET. The prevalence of motion blurring in routine cardiac PET is not fully appreciated due to challenges identifying subtle motion artefacts. This study utilizes a recent prototype Data-Driven Motion Correction (DDMC) algorithm to generate corrected images that are compared with non-corrected images to identify visual differences in relative rubidium-82 perfusion images due to motion. METHODS 300 stress and 300 rest static images were reconstructed with DDMC and without correction (NMC). The 600 DDMC/NMC image pairs were assigned Visual Difference Score (VDS). The number of non-diagnostic images were noted. A "Dwell Fraction" (DF) was derived from the data to quantify motion and predict image degradation. RESULTS Motion degradation (VDS = 1 or 2) was evident in 58% of stress images and 33% of rest images. Seven NMC images were non-diagnostic-these originated from six studies giving a 2% rate of non-diagnostic studies due to motion. The DF metric was able to effectively predict image degradation. The DDMC heart identification and tracking was successful in all images. CONCLUSION Motion degradation is present in almost half of all relative perfusion images. The DDMC algorithm is a robust tool for predicting, assessing and correcting image degradation.
Collapse
Affiliation(s)
- Ian S Armstrong
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK.
| | - Matthew J Memmott
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Charles Hayden
- Siemens Medical Solutions USA, Inc., Molecular Imaging, Knoxville, TN, USA
| | - Parthiban Arumugam
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| |
Collapse
|
6
|
Nordström J, Harms HJ, Kero T, Sörensen J, Lubberink M. Influence of patient motion on quantitative accuracy in cardiac 15O-water positron emission tomography. J Nucl Cardiol 2022; 29:1742-1752. [PMID: 33655448 PMCID: PMC9345798 DOI: 10.1007/s12350-021-02550-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 10/26/2022]
Abstract
BACKGROUND Patient motion is a common problem during cardiac PET. The purpose of the present study was to investigate to what extent motions influence the quantitative accuracy of cardiac 15O-water PET/CT and to develop a method for automated motion detection. METHOD Frequency and magnitude of motion was assessed visually using data from 50 clinical 15O-water PET/CT scans. Simulations of 4 types of motions with amplitude of 5 to 20 mm were performed based on data from 10 scans. An automated motion detection algorithm was evaluated on clinical and simulated motion data. MBF and PTF of all simulated scans were compared to the original scan used as reference. RESULTS Patient motion was detected in 68% of clinical cases by visual inspection. All observed motions were small with amplitudes less than half the LV wall thickness. A clear pattern of motion influence was seen in the simulations with a decrease of myocardial blood flow (MBF) in the region of myocardium to where the motion was directed. The perfusable tissue fraction (PTF) trended in the opposite direction. Global absolute average deviation of MBF was 3.1% ± 1.8% and 7.3% ± 6.3% for motions with maximum amplitudes of 5 and 20 mm, respectively. Automated motion detection showed a sensitivity of 90% for simulated motions ≥ 10 mm but struggled with the smaller (≤ 5 mm) simulated (sensitivity 45%) and clinical motions (accuracy 48%). CONCLUSION Patient motion can impair the quantitative accuracy of MBF. However, at typically occurring levels of patient motion, effects are similar to or only slightly larger than inter-observer variability, and downstream clinical effects are likely negligible.
Collapse
Affiliation(s)
- Jonny Nordström
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden.
- Centre for Research and Development, Uppsala/Gävleborg County, Gävle, Sweden.
| | - Hendrik J Harms
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
- MedTrace Pharma A/S, Lyngby, Denmark
| | - Tanja Kero
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Jens Sörensen
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
7
|
Garcia EV, Nye JA. Moving forward with motion reduction, detection and correction in cardiac PET. J Nucl Cardiol 2022; 29:1607-1610. [PMID: 33748937 DOI: 10.1007/s12350-021-02599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Room 1203, Atlanta, GA, 30322, USA.
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Room 1203, Atlanta, GA, 30322, USA
| |
Collapse
|
8
|
Kero T, Saraste A, Lagerqvist B, Sörensen J, Pikkarainen E, Lubberink M, Knuuti J. Quantitative myocardial perfusion response to adenosine and regadenoson in patients with suspected coronary artery disease. J Nucl Cardiol 2022; 29:24-36. [PMID: 34386859 PMCID: PMC8873130 DOI: 10.1007/s12350-021-02731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/03/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND The aim of the present study was to compare the quantitative flow responses of regadenoson against adenosine using cardiac 15O-water PET imaging in patients with suspected or known coronary artery disease (CAD). METHODS Hyperemic myocardial blood flow (MBF) after adenosine and regadenoson was compared using correlation and Bland-Altman analysis in 21 patients who underwent rest and adenosine 15O-water PET scans followed by rest and regadenoson 15O-water PET scans. RESULTS Global mean (± SD) MBF values at rest and stress were 0.92 ± 0.27 and 2.68 ± 0.80 mL·g·min for the adenosine study and 0.95 ± 0.29 and 2.76 ± 0.79 mL·g·min for the regadenoson study (P = 0.55 and P = 0.49). The correlations between global and regional adenosine- and regadenoson-based stress MBF were strong (r = 0.80 and r = 0.77). The biases were small for both global and regional MBF comparisons (0.08 and 0.09 mL·min·g), but the limits of agreement were wide for stress MBF. CONCLUSION The correlation between regadenoson- and adenosine-induced hyperemic MBF was strong but the agreement was only moderate indicating that established cut-off values for 150-water PET should be used cautiously if using regadenoson as vasodilator.
Collapse
Affiliation(s)
- Tanja Kero
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden.
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden.
| | - Antti Saraste
- Turku PET Centre, Turku, Finland
- Heart Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Bo Lagerqvist
- Department of Cardiology, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| | - Essi Pikkarainen
- Turku PET Centre, Turku, Finland
- Heart Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Mark Lubberink
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| | - Juhani Knuuti
- Turku PET Centre, Turku, Finland
- Heart Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
9
|
Lassen ML, Slomka PJ. Myocardial blood flow: Is motion correction necessary? J Nucl Cardiol 2021; 28:1347-1348. [PMID: 31541429 DOI: 10.1007/s12350-019-01896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Martin Lyngby Lassen
- Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Ste. A047, Los Angeles, CA, 90048, USA.
| | - Piotr J Slomka
- Artificial Intelligence in Medicine Program, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Ste. A047, Los Angeles, CA, 90048, USA
| |
Collapse
|
10
|
Armstrong IS, Memmott MJ, Saint KJ, Saillant A, Hayden C, Arumugam P. Assessment of motion correction in dynamic rubidium-82 cardiac PET with and without frame-by-frame adjustment of attenuation maps for calculation of myocardial blood flow. J Nucl Cardiol 2021; 28:1334-1346. [PMID: 31388967 DOI: 10.1007/s12350-019-01834-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Patient motion during pharmacological stressing can have substantial impact on myocardial blood flow (MBF) estimated from dynamic PET. This work evaluated a motion correction algorithm with and without adjustment of the PET attenuation map. METHODS Frame-by-frame motion correction was performed by three users on 30 rubidium-82 studies. Data were divided equally into three groups of motion severity [mild (M1), moderate (M2) and severe (M3)]. MBF data were compared for non-motion corrected (NC), motion-corrected-only (MC) and with adjustment of the attenuation map (MCAC). Percentage differences of MBF were calculated in the coronary territories and 17-segment polar plots. Polar plots of spill-over were also generated from the data. RESULTS Median differences of 23% were seen in the RCA and 18% for the LAD in the M3 category for MC vs NC images. Differences for MCAC vs MC images were considerably smaller and typically < 10%. Spill-over plots for MC and MCAC were notably more uniform compared with NC images. CONCLUSION Motion correction for dynamic rubidium data is desirable for future MBF software updates. Adjustment of the PET attenuation map results in only marginal differences and therefore is unlikely to be an essential requirement. Assessing the uniformity of spill-over plots is a useful visual aid for verifying motion correction techniques.
Collapse
Affiliation(s)
- Ian S Armstrong
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK.
| | - Matthew J Memmott
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Kimberley J Saint
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Antoine Saillant
- Siemens Medical Solutions USA, Inc, Molecular Imaging, Knoxville, TN, USA
| | - Charles Hayden
- Siemens Medical Solutions USA, Inc, Molecular Imaging, Knoxville, TN, USA
| | - Parthiban Arumugam
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| |
Collapse
|
11
|
Nye JA, Piccinelli M, Hwang D, David Cooke C, Paeng JC, Lee JM, Cho SG, Folks R, Bom HS, Koo BK, Garcia EV. Dynamic cardiac PET motion correction using 3D normalized gradient fields in patients and phantom simulations. Med Phys 2021; 48:5072-5084. [PMID: 34174095 DOI: 10.1002/mp.15059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
This work expands on the implementation of three-dimensional (3D) normalized gradient fields to correct for whole-body motion and cardiac creep in [N-13]-ammonia patient studies and evaluates its accuracy using a dynamic phantom simulation model. METHODS A full rigid-body algorithm was developed using 3D normalized gradient fields including a multi-resolution step and sampling off the voxel grid to reduce interpolation artifacts. Optimization was performed using a weighted similarity metric that accounts for opposing gradients between images of blood pool and perfused tissue without the need for segmentation. Forty-three retrospective dynamic [N-13]-ammonia PET/CT rest/adenosine-stress patient studies were motion corrected and the mean motion parameters plotted at each frame time point. Motion correction accuracy was assessed using a comprehensive dynamic XCAT simulation incorporating published physiologic parameters of the heart's trajectory following adenosine infusion as well as corrupted attenuation correction commonly observed in clinical studies. Accuracy of the algorithm was assessed objectively by comparing the errors between isosurfaces and centers of mass of the motion corrected XCAT simulations. RESULTS In the patient studies, the overall mean cranial-to-caudal translation was 7 mm at stress over the duration of the adenosine infusion. Noninvasive clinical measures of relative flow reserve and myocardial flow reserve were highly correlated with their invasive analogues. Motion correction accuracy assessed with the XCAT simulations showed an error of <1 mm in late perfusion frames that broadened gradually to <3 mm in earlier frames containing blood pool. CONCLUSION This work demonstrates that patients undergoing [N-13]-ammonia dynamic PET/CT exhibit a large cranial-to-caudal translation related to cardiac creep primarily at stress and to a lesser extent at rest, which can be accurately corrected by optimizing their 3D normalized gradient fields. Our approach provides a solution to the challenging condition where the image intensity and its gradients are opposed without the need for segmentation and remains robust in the presence of PET-CT mismatch.
Collapse
Affiliation(s)
- Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Marina Piccinelli
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Charles David Cooke
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
| | - Joo Myung Lee
- Samsung Medical Center, Heart Vascular Stroke Institute, Seoul, Korea
| | - Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Russell Folks
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
EANM procedural guidelines for PET/CT quantitative myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2020; 48:1040-1069. [PMID: 33135093 PMCID: PMC7603916 DOI: 10.1007/s00259-020-05046-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
The use of cardiac PET, and in particular of quantitative myocardial perfusion PET, has been growing during the last years, because scanners are becoming widely available and because several studies have convincingly demonstrated the advantages of this imaging approach. Therefore, there is a need of determining the procedural modalities for performing high-quality studies and obtaining from this demanding technique the most in terms of both measurement reliability and clinical data. Although the field is rapidly evolving, with progresses in hardware and software, and the near perspective of new tracers, the EANM Cardiovascular Committee found it reasonable and useful to expose in an updated text the state of the art of quantitative myocardial perfusion PET, in order to establish an effective use of this modality and to help implementing it on a wider basis. Together with the many steps necessary for the correct execution of quantitative measurements, the importance of a multiparametric approach and of a comprehensive and clinically useful report have been stressed.
Collapse
|
13
|
Armstrong IS, Memmott MJ. A tale of two phases: Can the worst of scans become the best of scans with motion correction? J Nucl Cardiol 2019; 26:1930-1933. [PMID: 29777483 DOI: 10.1007/s12350-018-1305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Affiliation(s)
- Ian S Armstrong
- Nuclear Medicine Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK.
| | - Matthew J Memmott
- Nuclear Medicine Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| |
Collapse
|