1
|
Sarkar S, Pham JM, Edwards KJ, Sharma N, Xu K, King AP, Del Castillo AF, Farwell MD, Pryma DA, Schuster SJ, Sellmyer MA. A biorthogonal chemistry approach for high-contrast antibody imaging of lymphoma at early time points. EJNMMI Res 2025; 15:26. [PMID: 40122966 PMCID: PMC11930911 DOI: 10.1186/s13550-025-01213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Monoclonal antibodies are highly specific for their targets making them effective for cancer therapy. However, their large molecular weight causes slow blood clearance, often requiring weeks to be removed from circulation. This limitation affects companion nuclear imaging and antibody-based diagnostics, necessitating delayed imaging. We report the expansion of a methodology improving positron emission tomography (PET) contrast of the lymphoma biomarker CD20 at early time points after radiolabeled antibody administration. Intact radioimmunoconjugates are allowed to stay in circulation long enough to accumulate in tumors, and then, using a chemical trigger, we induced rapid clearance of the radioactivity from non-target tissues by cleaving the linker between the antibody and the radioactivity. For brevity, we refer to the this as the Tetrazine KnockOut (TKO) method which uses the transcyclooctene-tetrazine (TCO-Tz) reaction, wherein an antibody is conjugated with linker containing TCO and a radioisotope. RESULTS We optimized the TCO linker with several different radioisotopes and evaluated the ability of tetrazines to knockout radioactivity from circulating antibodies. We explored several cell types and antibodies with varying internalization rates, to characterize the parameters of TKO and tested [89Zr]Zr-DFO-TCO-rituximab in a lymphoma model with PET imaging after Tz or vehicle administration. Treatment with Tz induced > 70% cleavage of the TCO linker in vitro within 30 min. Internalizing radioimmunoconjugates exhibited similar cellular uptake with Tz compared to vehicle, whereas decreased uptake was seen with slowly internalizing antibodies. In rodents, Tz rapidly liberated the radioactivity from the antibody, cleared from the blood, and accumulated in the bladder. TKO resulted in > 50% decreased radioactivity in non-target organs following Tz injection. No decrease in tumor uptake was observed when rate of antibody internalization is higher in a lymphoma model, and the target-to-background ratio increased by > twofold in comparison with Tz nontreated groups at 24 h. CONCLUSION The TKO approach potentiates early imaging of rituximab radioimmunoconjugates and has translational potential for lymphoma imaging.
Collapse
Affiliation(s)
- Swarbhanu Sarkar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Jonathan M Pham
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Kimberly J Edwards
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Nitika Sharma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Kexiang Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - A Paden King
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Andres Fernandez Del Castillo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Daniel A Pryma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Sellmyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 813A Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA, 19104-6059, USA.
- The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Tong J, Chen B, Volpi T, Li Y, Ellison PA, Cai Z. Current Advances in PARP1-Targeted Theranostics. J Labelled Comp Radiopharm 2025; 68:e4135. [PMID: 39995212 DOI: 10.1002/jlcr.4135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays critical roles in DNA repair, chromatin regulation, and cellular equilibrium, positioning it as a pivotal target for therapeutic interventions in cancer and central nervous system (CNS) disorders. PARP1 responds to oxidative stress and DNA damage through PARylation, influencing energy depletion, survival, inflammation, and genomic regulation in many biological scenarios. PARP inhibitors (PARPis) have demonstrated efficacy against cancers harboring defective homologous recombination repair pathways, notably those linked to BRCA mutations. PARP1-targeted PET imaging enables patient stratification, treatment assessment, and PARPi pharmacodynamic evaluation in cancers and other pathophysiological conditions. Importantly, PARP1-targeted theranostics have emerged for both diagnostic imaging and therapeutic applications in multiple types of cancers, representing a pivotal advancement in personalized oncology. However, its application in brain tumors is limited by the heterogeneous integrity of the blood brain barrier (BBB) and the blood-tumor barrier. Thus, the development of BBB-penetrant PARP1 tracers remains an unmet need for imaging brain cancers. This review summarizes the current landscape of radiopharmaceuticals and radioligands targeting PARP1, detailing their pharmacological characteristics and potential clinical uses. Furthermore, this review discusses PARP1 tracers that can cross the BBB, underscoring their potential applications in neurooncology and other neurological disorders.
Collapse
Affiliation(s)
- Jie Tong
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Baosheng Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Tommaso Volpi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Paul A Ellison
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Buck AK, Serfling SE, Kraus S, Samnick S, Dreher N, Higuchi T, Rasche L, Einsele H, Werner RA. Theranostics in Hematooncology. J Nucl Med 2023:jnumed.122.265199. [PMID: 37290799 DOI: 10.2967/jnumed.122.265199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the early 2000s, major clinical trials provided evidence of a favorable outcome from antibody-mediated radioimmunotherapy for hematologic neoplasms, which then led to Food and Drug Administration approval. For instance, the theranostic armamentarium for the referring hematooncologist now includes 90Y-ibritumomab tiuxetan for refractory low-grade follicular lymphoma or transformed B-cell non-Hodgkin lymphoma, as well as 131I-tositumomab for rituximab-refractory follicular lymphoma. Moreover, the first interim results of the SIERRA phase III trial reported beneficial effects from the use of 131I-anti-CD45 antibodies (Iomab-B) in refractory or relapsed acute myeloid leukemia. During the last decade, the concept of theranostics in hematooncology has been further expanded by C-X-C motif chemokine receptor 4-directed molecular imaging. Beyond improved detection rates of putative sites of disease, C-X-C motif chemokine receptor 4-directed PET/CT also selects candidates for radioligand therapy using β-emitting radioisotopes targeting the identical chemokine receptor on the lymphoma cell surface. Such image-piloted therapeutic strategies provided robust antilymphoma efficacy, along with desired eradication of the bone marrow niche, such as in patients with T- or B-cell lymphoma. As an integral part of the treatment plan, such radioligand therapy-mediated myeloablation also allows one to line up patients for stem cell transplantation, which leads to successful engraftment during the further treatment course. In this continuing education article, we provide an overview of the current advent of theranostics in hematooncology and highlight emerging clinical applications.
Collapse
Affiliation(s)
- Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany;
| | | | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; and
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; and
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; and
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Krasnovskaya OO, Abramchuck D, Erofeev A, Gorelkin P, Kuznetsov A, Shemukhin A, Beloglazkina EK. Recent Advances in 64Cu/ 67Cu-Based Radiopharmaceuticals. Int J Mol Sci 2023; 24:9154. [PMID: 37298101 PMCID: PMC10288943 DOI: 10.3390/ijms24119154] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Copper-64 (T1/2 = 12.7 h) is a positron and beta-emitting isotope, with decay characteristics suitable for both positron emission tomography (PET) imaging and radiotherapy of cancer. Copper-67 (T1/2 = 61.8 h) is a beta and gamma emitter, appropriate for radiotherapy β-energy and with a half-life suitable for single-photon emission computed tomography (SPECT) imaging. The chemical identities of 64Cu and 67Cu isotopes allow for convenient use of the same chelating molecules for sequential PET imaging and radiotherapy. A recent breakthrough in 67Cu production opened previously unavailable opportunities for a reliable source of 67Cu with high specific activity and purity. These new opportunities have reignited interest in the use of copper-containing radiopharmaceuticals for the therapy, diagnosis, and theranostics of various diseases. Herein, we summarize recent (2018-2023) advances in the use of copper-based radiopharmaceuticals for PET, SPECT imaging, radiotherapy, and radioimmunotherapy.
Collapse
Affiliation(s)
- Olga O. Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Daniil Abramchuck
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Peter Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Kuznetsov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Andrey Shemukhin
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| |
Collapse
|
5
|
Uenomachi M, Takahashi M, Shimazoe K, Takahashi H, Kamada K, Orita T, Ogane K, Tsuji AB. Simultaneous in vivo imaging with PET and SPECT tracers using a Compton-PET hybrid camera. Sci Rep 2021; 11:17933. [PMID: 34504184 PMCID: PMC8429650 DOI: 10.1038/s41598-021-97302-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023] Open
Abstract
Positron-emission tomography (PET) and single-photon-emission computed tomography (SPECT) are well-established nuclear-medicine imaging methods used in modern medical diagnoses. Combining PET with 18F-fluorodeoxyglucose (FDG) and SPECT with an 111In-labelled ligand provides clinicians with information about the aggressiveness and specific types of tumors. However, it is difficult to integrate a SPECT system with a PET system because SPECT requires a collimator. Herein, we describe a novel method that provides simultaneous imaging with PET and SPECT nuclides by combining PET imaging and Compton imaging. The latter is an imaging method that utilizes Compton scattering to visualize gamma rays over a wide range of energies without requiring a collimator. Using Compton imaging with SPECT nuclides, instead of the conventional SPECT imaging method, enables PET imaging and Compton imaging to be performed with one system. In this research, we have demonstrated simultaneous in vivo imaging of a tumor-bearing mouse injected with 18F-FDG and an 111In-antibody by using a prototype Compton-PET hybrid camera. We have succeeded in visualizing accumulations of 18F-FDG and 111In-antibody by performing PET imaging and Compton imaging simultaneously. As simultaneous imaging utilizes the same coordinate axes, it is expected to improve the accuracy of diagnoses.
Collapse
Affiliation(s)
- Mizuki Uenomachi
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Miwako Takahashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Inage, Chiba, Chiba, Japan
| | - Kenji Shimazoe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan. .,JST, PRESTO, Saitama, 332-0012, Japan.
| | - Hiroyuki Takahashi
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kei Kamada
- Tohoku University, 2-1-1, Katahira, Sendai, Miyagi, Japan
| | - Tadashi Orita
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenichiro Ogane
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Nuclear Medicine, International University of Health and Welfare, 1-4-3, Minato-ku, Tokyo, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Inage, Chiba, Chiba, Japan
| |
Collapse
|
6
|
Hanaoka K, Miyaji N, Yoneyama H, Ogawa M, Maeda T, Sakaguchi K, Iimori T, Tsushima H. [Radiological Technology for Targeted Radionuclide Therapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2020; 76:1237-1247. [PMID: 33342942 DOI: 10.6009/jjrt.2020_jsrt_76.12.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Targeted radioisotope therapy (TRT) is a radiotherapy using radioisotope or drug incorporating it and has been used as a treatment for selectively irradiating cancer cells. In recent years, interest in TRT has increased due to improvements in radionuclide production technology, development of new drugs and imaging modalities, and improvements in radiation technology. In order to enhance the effect of TRT, measurement of individual radiation doses to tumor tissue and organs at risk is important using highly quantitative nuclear medicine images. In this paper, we present a review of literature on optimization of TRT, which is a new research area from the perspective of radiation technology.
Collapse
Affiliation(s)
- Kohei Hanaoka
- Institute of Advanced Clinical Medicine, Kindai University
| | - Noriaki Miyaji
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Hiroto Yoneyama
- Department of Radiological Technology, Kanazawa University Hospital
| | | | - Takamasa Maeda
- Radiological Technology Section, QST Hospital, National Institutes for Quantum and Radiological Science and Technology
| | | | | | - Hiroyuki Tsushima
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences
| |
Collapse
|
7
|
Hosono M. Perspectives for Concepts of Individualized Radionuclide Therapy, Molecular Radiotherapy, and Theranostic Approaches. Nucl Med Mol Imaging 2019; 53:167-171. [PMID: 31231436 PMCID: PMC6554368 DOI: 10.1007/s13139-019-00586-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022] Open
Abstract
Radionuclide therapy (RNT) stands on the delivery of radiation to tumors or non-tumor target organs using radiopharmaceuticals that are designed to have specific affinity to targets. RNT is recently called molecular radiotherapy (MRT) by some advocators in order to emphasize its characteristics as radiotherapy and the relevance of dosimetry-guided optimization of treatment. Moreover, RNT requires relevant radiation protection standards because it employs unsealed radionuclides and gives therapeutic radiation doses in humans. On the basis of these radiation protection standards, the development and use of radiopharmaceuticals for combined application through diagnostics and therapeutics lead to theranostic approaches that will enhance the efficacy and safety of treatment by implementing dosimetry-based individualization.
Collapse
Affiliation(s)
- Makoto Hosono
- Institute of Advanced Clinical Medicine and Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511 Japan
| |
Collapse
|
8
|
England CG, Rui L, Cai W. Lymphoma: current status of clinical and preclinical imaging with radiolabeled antibodies. Eur J Nucl Med Mol Imaging 2016; 44:517-532. [PMID: 27844106 DOI: 10.1007/s00259-016-3560-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
Lymphoma is a complex disease that arises from cells of the immune system with an intricate pathology. While lymphoma may be classified as Hodgkin or non-Hodgkin, each type of tumor is genetically and phenotypically different and highly invasive tissue biopsies are the only method to investigate these differences. Noninvasive imaging strategies, such as immunoPET, can provide a vital insight into disease staging, monitoring treatment response in patients, and dose planning in radioimmunotherapy. ImmunoPET imaging with radiolabeled antibody-based tracers may also assist physicians in optimizing treatment strategies and enhancing patient stratification. Currently, there are two common biomarkers for molecular imaging of lymphoma, CD20 and CD30, both of which have been considered for investigation in preclinical imaging studies. In this review, we examine the current status of both preclinical and clinical imaging of lymphoma using radiolabeled antibodies. Additionally, we briefly investigate the role of radiolabeled antibodies in lymphoma therapy. As radiolabeled antibodies play critical roles in both imaging and therapy of lymphoma, the development of novel antibodies and the discovery of new biomarkers may greatly affect lymphoma imaging and therapy in the future.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Room 7137, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
| |
Collapse
|
9
|
Eskian M, Khorasanizadeh M, Kraeber-Bodere F, Rezaei N. Radioimmunotherapy in non-Hodgkin lymphoma: Prediction and assessment of response. Crit Rev Oncol Hematol 2016; 107:182-189. [DOI: 10.1016/j.critrevonc.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/24/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022] Open
|
10
|
The use of Yttrium-90 Ibritumomab Tiuxetan ((90)Y-IT) as a consolidation therapy in high-risk patients with diffuse large B-cell lymphoma ineligible for autologous stem-cell transplantation. Contemp Oncol (Pozn) 2015. [PMID: 26199570 PMCID: PMC4507887 DOI: 10.5114/wo.2015.50012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aim of the study To evaluate the efficacy and safety of Yttrium-90 Ibritumomab Tiuxetan (90Y-IT) as a consolidation therapy in the management of DLBCL. Material and methods Patients with primary refractory or high-risk DLBCL (n = 18), ineligible for autologous stem-cell transplantation, were included in a retrospective study performed at three centers by the Polish Lymphoma Research Group (PLRG). All patients (mean age 61, range 35–82) either didn't achieve a complete response or didn't complete the scheduled therapy due to its complications. Response rates (CR, PR, SD, PD) according to Cheson criteria, overall survival (OS), progression-free survival (PFS) and adverse effects of radioimmunotherapy were analyzed. Results Consolidation radioimmunotherapy increased the CR rate from 38% (n = 7) to 82% (n = 15). One patient remained in PR, one patient remained in SD, while one patient remained in PD. During a median follow-up of five years, 11 patients (62%) were alive with no recurrence, 4 patients (22%) were alive with relapse while 3 patients (16%) died. There was no statistically significant difference in PFS between those in CR and those in PR before 90Y-IT. Conclusions Radioimmunotherapy is an effective consolidation therapy for high risk/refractory DLBCL patients and worthy of further investigation in prospective trials.
Collapse
|
11
|
Hanaoka K, Hosono M, Tatsumi Y, Ishii K, Im SW, Tsuchiya N, Sakaguchi K, Matsumura I. Heterogeneity of intratumoral (111)In-ibritumomab tiuxetan and (18)F-FDG distribution in association with therapeutic response in radioimmunotherapy for B-cell non-Hodgkin's lymphoma. EJNMMI Res 2015; 5:10. [PMID: 25853016 PMCID: PMC4385239 DOI: 10.1186/s13550-015-0093-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/25/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The purpose of this study was to quantitatively evaluate the tumor accumulation and heterogeneity of (111)In-ibritumomab tiuxetan (Zevalin®) and tumor accumulation of (18)F-fluoro-deoxyglucose (FDG) and compare them to the tumor response in B-cell non-Hodgkin's lymphoma patients receiving (90)Y-ibritumomab tiuxetan (Zevalin®) therapy. METHODS Sixteen patients with histologically confirmed non-Hodgkin's B-cell lymphoma who underwent (90)Y-ibritumomab tiuxetan therapy along with (111)In-ibritumomab tiuxetan single-photon emission computerized tomography (SPECT)/CT and FDG positron emission tomography (PET)/CT were enrolled in this retrospective study. On pretherapeutic FDG PET/CT images, the maximum standardized uptake value (SUVmax) was measured. On SPECT/CT images, a percentage of the injected dose per gram (%ID/g) and SUVmax of (111)In-ibritumomab tiuxetan were measured at 48 h after its administration. The skewness and kurtosis of the voxel distribution were calculated to evaluate the intratumoral heterogeneity of tumor accumulation. As another intratumoral heterogeneity index, cumulative SUV-volume histograms describing the percentage of the total tumor volume above the percentage thresholds of pretherapeutic FDG and (111)In-ibritumomab tiuxetan SUVmax (area under the curve of the cumulative SUV histograms (AUC-CSH)) were calculated. All lesions (n = 42) were classified into responders and non-responders lesion-by-lesion on pre- and post-therapeutic CT images. RESULTS A positive correlation was observed between the FDG SUVmax and accumulation of (111)In-ibritumomab tiuxetan in lesions. A significant difference in pretherapeutic FDG SUVmax was observed between responders and non-responders, while no significant difference in (111)In-ibritumomab tiuxetan SUVmax was observed between the two groups. In contrast, voxel distribution of FDG demonstrated no significant differences in the three heterogeneity indices between responders and non-responders, while (111)In-ibritumomab tiuxetan demonstrated skewness of 0.58 ± 0.16 and 0.73 ± 0.24 (p < 0.05), kurtosis of 2.39 ± 0.32 and 2.78 ± 0.53 (p < 0.02), and AUC-CSH of 0.37 ± 0.04 and 0.34 ± 0.05 (p < 0.05) for responders and non-responders. CONCLUSIONS Pretherapeutic FDG accumulation was predictive of the tumor response in (90)Y-ibritumomab tiuxetan therapy. The heterogeneity of the intratumoral distribution rather than the absolute level of (111)In-ibritumomab tiuxetan was correlated with the tumor response.
Collapse
Affiliation(s)
- Kohei Hanaoka
- Department of Radiology, Faculty of Medicine, Kinki University, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511 Japan
| | - Makoto Hosono
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Faculty of Medicine, Kinki University, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511 Japan
| | - Yoichi Tatsumi
- Department of Hematology, Faculty of Medicine, Kinki University, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511 Japan
| | - Kazunari Ishii
- Neurocognitive Disorders Center, Faculty of Medicine, Kinki University, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511 Japan
| | - Sung-Woon Im
- Department of Radiology, Faculty of Medicine, Kinki University, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511 Japan
| | - Norio Tsuchiya
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Faculty of Medicine, Kinki University, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511 Japan
| | - Kenta Sakaguchi
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Faculty of Medicine, Kinki University, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511 Japan
| | - Itaru Matsumura
- Department of Hematology, Faculty of Medicine, Kinki University, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511 Japan
| |
Collapse
|
12
|
Does tumoral (111)In-ibritumomab accumulation correlate with therapeutic effect and outcome in relapsed or refractory low-grade B-cell lymphoma patients undergoing (90)Y-ibritumomab radioimmunotherapy? Eur Radiol 2014; 24:3191-8. [PMID: 25117746 DOI: 10.1007/s00330-014-3378-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/03/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether tumoral (111)In-ibritumomab accumulation on pre-treatment imaging correlates with therapeutic responses and progression-free survival (PFS) in patients with non-Hodgkin's lymphoma (NHL) undergoing (90)Y-ibritumomab radioimmunotherapy (RIT). METHODS This was a retrospective study of 39 patients with low-grade B-cell NHL treated with RIT. We classified the patients into positive and negative groups according to the presence or absence of tumoral (111)In-ibritumomab accumulation on pre-treatment (111)In-ibritumomab examinations. We then determined the correlation between the (111)In-ibritumomab imaging findings and the patients' therapeutic responses and PFS. RESULTS Tumoral (111)In-ibritumomab accumulation was positive in 64.1% and negative in 35.9% of the patients. The (111)In-positive patients had a significantly higher overall response rate (ORR) compared to the (111)In-negative patients (100.0% vs. 78.6%, p = 0.02). The (111)In-negative patients with advanced disease (stages III/IV) had a significantly lower ORR (40%) and a significantly higher rate of progressive disease (40.0%) compared to those of the (111)In-negative patients with limited disease (stages I/II) (100% and 0%, p = 0.009 each). However, these two groups had similar 2-year PFS rates (65.0% vs. 50.0%, p = 0.80). CONCLUSIONS (111)In-ibritumomab imaging findings seem to correlate with ORR and the progressive disease rate after RIT, but not with PFS. KEY POINTS All 39 NHL patients had tumoral accumulation on pretreatment FDG-PET/CT. 64.1% of NHL patients had tumoral accumulation on a pretreatment (111) In-ibritumomab examination. (90) Y-ibritumomab RIT resulted in high overall response and complete remission rates. (111) In-ibritumomab avidity of lymphoma lesions could predict a strong therapeutic effect. (111) In-ibritumomab imaging findings did not correlate with progression-free survival.
Collapse
|
13
|
Azhdarinia A, Ghosh S. Nuclear Imaging with Nanoparticles. Nanomedicine (Lond) 2014. [DOI: 10.1201/b17246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Validation of an extraction paper chromatography (EPC) technique for estimation of trace levels of 90Sr in 90Y solutions obtained from 90Sr/90Y generator systems. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-2981-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Managing lymphoma with non-FDG radiotracers: current clinical and preclinical applications. BIOMED RESEARCH INTERNATIONAL 2013; 2013:626910. [PMID: 23841079 PMCID: PMC3690206 DOI: 10.1155/2013/626910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022]
Abstract
Nuclear medicine imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have played a prominent role in lymphoma management. PET with [(18)F]Fluoro-2-deoxy-D-glucose (FDG) is the most commonly used tool for lymphoma imaging. However, FDG-PET has several limitations that give the false positive or false negative diagnosis of lymphoma. Therefore, development of new radiotracers with higher sensitivity, specificity, and different uptake mechanism is in great demand in the management of lymphoma. This paper reviews non-FDG radiopharmaceuticals that have been applied for PET and SPECT imaging in patients with different types of lymphoma, with attention to diagnosis, staging, therapy response assessment, and surveillance for disease relapse. In addition, we introduce three radiolabeled anti-CD20 antibodies for radioimmunotherapy, which is another important arm for lymphoma treatment and management. Finally, the relatively promising radiotracers that are currently under preclinical development are also discussed in this paper.
Collapse
|
16
|
Cicone F, D'Arienzo M, Carpaneto A, Russo E, Coniglio A, Delaloye AB, Scopinaro F. Quantification of dose nonuniformities by voxel-based dosimetry in patients receiving 90Y-ibritumomab-tiuxetan. Cancer Biother Radiopharm 2013; 28:98-107. [PMID: 23289952 DOI: 10.1089/cbr.2012.1299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED Abstract Objective: To assess the impact of nonuniform dose distribution within lesions and tumor-involved organs of patients receiving Zevalin(®), and to discuss possible implications of equivalent uniform biological effective doses (EU-BED) on treatment efficacy and toxicity. MATLAB™ -based software for voxel-based dosimetry was adopted for this purpose. METHODS Eleven lesions from seven patients with either indolent or aggressive non-Hodgkin lymphoma were analyzed, along with four organs with disease. Absorbed doses were estimated by a direct integration of single-voxel kinetic data from serial tomographic images. After proper corrections, differential BED distributions and surviving cell fractions were estimated, allowing for the calculation of EU-BED. To quantify dose uniformity in each target area, a heterogeneity index was defined. RESULTS Average doses were below those prescribed by conventional radiotherapy to eradicate lymphoma lesions. Dose heterogeneity and effect on tumor control varied among lesions, with no apparent relation to tumor mass. Although radiation doses to involved organs were safe, unexpected liver toxicity occurred in one patient who presented with a pattern of diffuse infiltration. CONCLUSION Voxel-based dosimetry and radiobiologic modeling can be successfully applied to lesions and tumor-involved organs, representing a methodological advance over estimation of mean absorbed doses. However, effects on tumor control and organ toxicity still cannot be easily predicted.
Collapse
Affiliation(s)
- Francesco Cicone
- Nuclear Medicine, Department of Translational Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
2-[3,5-Bis-(2-fluorobenzylidene)-4-piperidon-1-yl]-N-(4-fluorobenzyl)-acetamide and Its Evaluation as an Anticancer Agent. J CHEM-NY 2013. [DOI: 10.1155/2013/935646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synthesis of 2-[3,5-bis-(2-fluorobenzylidene)-4-piperidon-1-yl]-N-(4-fluorobenzyl)-acetamide, a derivative of 3,5-bis-(2-fluorobenzylidene)-4-piperidone (EF24), as an antiproliferative and imageable compound is described. The radioactive derivative was synthesized in 40–45% radiochemical yield using N-[4-fluoro(18F)benzyl]-2-bromoacetamide (NFLOBA) as a radiolabeled synthon for coupling with EF24. Cell proliferation assays showed that 2-[3,5-bis-(2-fluorobenzylidene)-4-piperidon-1-yl]-N-(4-fluorobenzyl)-acetamide (NFLOBA-EF24) had antiproliferative efficacy similar to that of EF24 in lung adenocarcinoma H441 cells.18F-NFLOBA-EF24 was investigated in normal rats for whole-body PET imaging and biodistribution. At necropsy after 1 h of injection, about 12% of injected compound was still circulating in blood; liver, kidney, and muscle were other tissues with moderate amounts of accumulation. In order to assess the tumor-suppressive activity, nonradioactive NFLOBA-EF24 was administered in nude rats carrying xenograft H441 tumor. After 15 days of treatment, the tumor size decreased by approximately 83% compared to the tumors in control rats. The tumor regression was also confirmed by molecular imaging of glucose metabolism with18F- fluorodeoxyglucose. The results suggest that EF24 could be efficiently modified with18F-labeled synthon NFLOBA for convenient PET imaging without altering the antitumor efficacy of the original compound. This study provides visual kinetics of synthetic curcuminoid EF24 by positron emission tomography for the first time.
Collapse
|
18
|
Tran L, Huitema ADR, Vogel WV, Beijnen JH, Baars JW. Lack of tumor uptake of 131-I labeled rituximab in a patient with a CD20 positive lymphoma lesion. J Oncol Pharm Pract 2012; 18:417-20. [PMID: 22228555 DOI: 10.1177/1078155211428998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radioimmunotherapy has emerged as a treatment modality for patients with CD20 positive B-cell non-Hodgkin's lymphoma (NHL). Prior to administration of a therapeutic dose, confirmation of uptake of the radiolabeled compound in tumor locations and calculation of an appropriate dose can be performed using a diagnostic dose and subsequent imaging. We report the case of a 69-year-old male with a relapsed mantle cell lymphoma scheduled for radioimmunotherapy, where diagnostic imaging with 131-I labeled rituximab revealed unexpected new insights with implications for treatment. Persistence of the mantle cell lymphoma in a lymph node in the left arm was demonstrated by an 18-F fluorodeoxyglucose scan. However, a scan after a diagnostic dose of 131-I labeled rituximab did not show any uptake of the tracer, even though subsequent cytological analysis unequivocally confirmed a CD20 positive B-cell population in the lesion. The administration of a therapeutic dose of 131-I labeled rituximab was therefore cancelled. We here discuss the mechanisms that may explain lack of targeting in a proven CD20-positive lymphoma and provide recommendations for further studies.
Collapse
Affiliation(s)
- L Tran
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Lagisetty P, Subramaniam D, Sahoo K, Anant S, Awasthi V. Anticancer activity of an imageable curcuminoid 1-[2-aminoethyl-(6-hydrazinopyridine-3-carbamidyl)-3,5-bis-(2-fluorobenzylidene)-4-piperidone (EFAH). Chem Biol Drug Des 2011; 79:194-201. [PMID: 22107757 DOI: 10.1111/j.1747-0285.2011.01271.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3,5-Bis(2-fluorobenzylidine)-4-piperidone or EF24 is a potent anticancer derivative of curcumin. Using an amine derivative of EF24, we synthesized a hydrazinonicotinic acid conjugate, EFAH, for Tc-99m radiolabelling and single photon emission tomography imaging. The aqueous solubility of EFAH (3.5 mg/mL) was significantly more than that of EF24 (1.2 mg/mL); the octanol/water partition coefficient of EFAH was estimated at log P = 0.33. As an antiproliferative agent, EFAH was as effective as EF24 in suppressing the proliferation of H441, MiaPaCa-2 and Panc-1 cells. Daily intraperitoneal injection of EFAH (5 μg) for 3 weeks in mice carrying xenografts of Panc-1 pancreatic cancer showed a mean tumour volume reduction of 79%; the tumour weight decreased by 82% in the treated group. For imaging and biodistribution, EFAH was labelled with Tc-99m (98% RCY) and intravenously administered in rats. Approximately 23.7% and 14.3% of injected dose accumulated in liver and intestine, respectively, suggesting that EFAH is mostly eliminated by hepatobiliary route. The results indicate that HYNIC modification of EF24 for Tc-99m radiolabelling does not affect its antiproliferative efficacy. For the first time, a visual biodisposition of EF24 in a live animal model has been demonstrated. Such knowledge could be of benefit in developing therapeutic curcuminoids, such as EF24.
Collapse
Affiliation(s)
- Pallavi Lagisetty
- Department of Pharmaceutical Sciences and Small Animal Imaging Facility, University of Oklahoma Health Science Center, 1110 N, Stonewall Avenue, Oklahoma City, OK 73117, USA
| | | | | | | | | |
Collapse
|
20
|
Liu Z, Jia B, Zhao H, Chen X, Wang F. Specific targeting of human integrin α(v)β (3) with (111)In-labeled Abegrin™ in nude mouse models. Mol Imaging Biol 2011; 13:112-20. [PMID: 20383594 DOI: 10.1007/s11307-010-0302-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The cell adhesion molecule integrin α(v)β(3) is an important player in the process of tumor angiogenesis and metastasis. Abegrin™, a fully humanized anti-integrin α(v)β(3) monoclonal antibody, was currently in clinical trials for cancer therapy. Herein, we labeled Abegrin™ with (111)In, evaluated the in vitro and in vivo characteristics, and investigated whether the expression of integrin α(v)β(3) in tumors could be imaged with (111)In-labeled Abegrin™. METHODS The binding affinity and specificity of Abegrin™ was analyzed using U87MG glioblastoma cells. Abegrin™ was coupled with 1,4,7,10-tetraazadodecane-N,N',N",N'″-tetraacetic acid (DOTA) for (111)In radiolabeling. γ Imaging of (111)In-DOTA-Abegrin™ was carried out in nude mice bearing both integrin α(v)β(3)-positive U87MG and integrin α(v)β(3)-negative HT-29 tumors. Biodistribution and blocking studies of (111)In-DOTA-Abegrin™ were investigated in U87MG tumor-bearing nude mice. RESULTS Abegrin™ exhibited high-binding affinity to human integrin α(v)β(3) expressed on U87MG cells (K (d) of 0.35 ± 0.06 nM). The antibody retained antigen-binding affinity/specificity after DOTA conjugation. γ Imaging showed that the tumor uptake of (111)In-DOTA-Abegrin™ in integrin α(v)β(3)-positive U87MG tumors was much higher than that in integrin α(v)β(3)-negative HT-29 tumors. In the HT-29 tumors, Abegrin™ was mainly nonspecifically accumulated around the blood vessels, while in the U87MG tumors, besides the nonspecific tumor retention, Abegrin™ also specifically bound the human integrin α(v)β(3) expressed on the tumor cells. Biodistribution and blocking studies exhibited that the U87MG tumor uptake of (111)In-DOTA-Abegrin™ decreased from 14.12 ± 0.44 to 6.93 ± 0.94 percentage of injected dose per gram of tissue after coinjection of excess dose of cold Abegrin™, which confirmed the in vivo integrin α(v)β(3) binding specificity of (111)In-DOTA-Abegrin™. CONCLUSIONS Abegrin™ showed specific binding to human integrin α(v)β(3) expressed on the tumor cells. (111)In-DOTA-Abegrin™ can specifically target the human integrin α(v)β(3) expression in the nude mouse model. (111)In-DOTA-Abegrin™ has a potential for clinical translation as an agent for integrin α(v)β(3)-positive tumor imaging, evaluating tumor angiogenic status and monitoring the therapeutic efficacy of Abegrin™-based cancer therapy.
Collapse
Affiliation(s)
- Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | | | | | | | | |
Collapse
|
21
|
Cazaentre T, Morschhauser F, Vermandel M, Betrouni N, Prangère T, Steinling M, Huglo D. Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 2009; 37:494-504. [PMID: 19820933 DOI: 10.1007/s00259-009-1275-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022]
Abstract
PURPOSE Radioimmunotherapy (RIT) is a new treatment option for patients with non-Hodgkin lymphoma (NHL). Response to RIT currently remains difficult to predict using conventional prognostic factors and could be refined using functional imaging. The goal of this work is to evaluate the value of (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in predicting response to Yttrium 90-labeled monoclonal antibodies for patients with NHL. METHODS Thirty-five patients with NHL who had undergone (18)F-FDG PET prior to RIT with either (90)Y-ibritumomab tiuxetan (group A; n = 17) or (90)Y-epratuzumab tetraxetan (group B; n = 18) were included in this retrospective study. Four functional criteria were determined for each tumour lesion in a given patient: maximum and mean standard uptake values (SUVmax and SUVmean), functional lesion volume (LVol) and total lesion glycolysis (TLG, product of the volume and the SUVmean). For each patient, we determined highest SUVmax and SUVmean, cumulative TLG (TLGcum) and sum of all LVol (TVol) and compared their predictive value on response (complete or partial response according to IWC) to RIT with those of conventional prognostic factors in group A and B. RESULTS A total of 154 lesions were analysed. Nineteen patients (54%) responded to RIT according to IWC. In group A, response rate was 54, 75 and 75% in patients with a SUV max <20 g/ml, a TVol <100 ml and a TLGcum <1060 g, respectively while no patient above these thresholds responded (p < 0.005). In group B, the response rate was 93% for with SUVmax <15 g/ml while no patient above this threshold responded. With TLGcum below 1,360 g, 100% of the patient responded, compared with 37% of patients whose TLGcum was above this threshold (p < 0.05). By contrast, conventional prognostic factors failed to predict response. CONCLUSIONS Our preliminary results indicate that pre-therapy (18)F-FDG PET functional parameters such as SUVmax and TLG may help predicting more accurately response to single agent Y90 based RIT.
Collapse
Affiliation(s)
- Thomas Cazaentre
- Service de Médecine Nucléaire et Imagerie Fonctionnelle, CHU Lille, 59000, Lille, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wong CYO, Khong PL. Tumor Metabolic Phenotypes on 18F FDG PET. J Nucl Med 2009; 50:1010-1; author reply 1011-12. [DOI: 10.2967/jnumed.108.061010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Iagaru AH, Gambhir SS, Goris ML. Reply: Tumor Metabolic Phenotypes on 18F FDG PET. J Nucl Med 2009. [DOI: 10.2967/jnumed.109.061945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Abstract
In this issue of Blood, Pagel and colleagues compare pretargeted versus conventional radioimmunotherapy in lymphoma models, reporting the superiority of pretargeting and lack of benefit for antibody cocktails versus a single antibody.
Collapse
|
25
|
A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: prospects for dual-targeted antibody/radioantibody therapy. Blood 2009; 113:3891-5. [PMID: 19182204 DOI: 10.1182/blood-2008-11-188896] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody-based therapies, both unconjugated antibodies and radioimmunotherapy, have had a significant impact on the treatment of non-Hodgkin lymphoma. Single-agent rituximab is an effective therapy, but it is being increasingly used with combination chemotherapy to improve the objective response and its duration. The approved anti-CD20 radioimmunoconjugates ((90)Y-ibritumomab tiuxetan or (131)I-tositumomab) have had encouraging results, with trials now seeking to incorporate a radioimmunoconjugate in various settings. However, new preclinical data raise important questions concerning current radioimmunoconjugate treatment regimens and ways to improve them. In radioconjugate therapy, nearly 900 mg of the unlabeled anti-CD20 IgG antibody is predosed to the patient before the anti-CD20 antibody conjugated to either (90)Y or (131)I is given. Combining an unconjugated anti-CD20 antibody therapy with a radioimmunoconjugate binding to a noncompeting antigen might improve responses by allowing optimal uptake of each agent. Preclinical models have indicated that careful consideration should be given to predosing when using competing antibodies, but that consolidation anti-CD20 therapy enhances the efficacy of radioimmunoconjugate therapy. New technologies, such as pretargeted radioimmunotherapy, also hold promise by reducing toxicity without sacrificing efficacy, and consideration should be given to fractionating or giving multiple radioimmunoconjugate treatments. This perspective discusses how these issues could affect current and future clinical trials.
Collapse
|