1
|
Ramachandran A, Hussain H, Seiberlich N, Gulani V. Perfusion MR Imaging of Liver: Principles and Clinical Applications. Magn Reson Imaging Clin N Am 2024; 32:151-160. [PMID: 38007277 DOI: 10.1016/j.mric.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Perfusion imaging techniques provide quantitative characterization of tissue microvasculature. Perfusion MR of liver is particularly challenging because of dual afferent flow, need for large organ high-resolution coverage, and significant movement with respiration. The most common MR technique used for quantifying liver perfusion is dynamic contrast-enhanced MR imaging. Here, the authors describe the various perfusion MR models of the liver, the basic concepts behind implementing a perfusion acquisition, and clinical results that have been obtained using these models.
Collapse
Affiliation(s)
- Anupama Ramachandran
- Brigham and Women's Hospital, Harvard University, Boston, MA, USA; Department of Radiology, University of Michigan, AnnArbor, MI, USA
| | - Hero Hussain
- Department of Radiology, University of Michigan, AnnArbor, MI, USA
| | | | - Vikas Gulani
- Department of Radiology, University of Michigan, AnnArbor, MI, USA.
| |
Collapse
|
2
|
Li S, Yuan L, Yue M, Xu Y, Liu S, Wang F, Liu X, Wang F, Deng J, Sun Q, Liu X, Xue C, Lu T, Zhang W, Zhou J. Early evaluation of liver metastasis using spectral CT to predict outcome in patients with colorectal cancer treated with FOLFOXIRI and bevacizumab. Cancer Imaging 2023; 23:30. [PMID: 36964617 PMCID: PMC10039512 DOI: 10.1186/s40644-023-00547-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
PURPOSE Early evaluation of the efficacy of first-line chemotherapy combined with bevacizumab in patients with colorectal cancer liver metastasis (CRLM) remains challenging. This study used 2-month post-chemotherapy spectral computed tomography (CT) to predict the overall survival (OS) and response of CRLM patients with bevacizumab-containing therapy. METHOD This retrospective analysis was performed in 104 patients with pathologically confirmed CRLM between April 2017 and October 2021. Patients were treated with 5-fluorouracil, leucovorin, oxaliplatin or irinotecan with bevacizumab. Portal venous phase spectral CT was performed on the target liver lesion within 2 months of commencing chemotherapy to demonstrate the iodine concentration (IoD) of the target liver lesion. The patients were classified as responders (R +) or non-responders (R -) according to the Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 at 6 months. Multivariate analysis was performed to determine the relationships of the spectral CT parameters, tumor markers, morphology of target lesions with OS and response. The differences in portal venous phase spectral CT parameters between the R + and R - groups were analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the predictive power of spectral CT parameters. RESULTS Of the 104 patients (mean age ± standard deviation: 57.73 years ± 12.56; 60 men) evaluated, 28 (26.9%) were classified as R + . Cox multivariate analysis identified the iodine concentration (hazard ratio [HR]: 1.238; 95% confidence interval [95% CI]: 1.089-1.408; P < 0.001), baseline tumor longest diameter (BLD) (HR: 1.022; 95% CI: 1.005-1.038, P = 0.010), higher baseline CEA (HR: 1.670; 95% CI: 1.016-2.745, P = 0.043), K-RAS mutation (HR: 2.027; 95% CI: 1.192-3.449; P = 0.009), and metachronous liver metastasis (HR: 1.877; 95% CI: 1.179-2.988; P = 0.008) as independent risk factors for patient OS. Logistic multivariate analysis identified the IoD (Odds Ratio [OR]: 2.243; 95% CI: 1.405-4.098; P = 0.002) and clinical N stage of the primary tumor (OR: 4.998; 95% CI: 1.210-25.345; P = 0.035) as independent predictor of R + . Using IoD cutoff values of 4.75 (100ug/cm3) the area under the ROC curve was 0.916, sensitivity and specificity were 80.3% and 96.4%, respectively. CONCLUSIONS Spectral CT IoD can predict the OS and response of patients with CRLM after 2 months of treatment with bevacizumab-containing therapy.
Collapse
Affiliation(s)
- Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Long Yuan
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Mengying Yue
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
| | - Yuan Xu
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Suwei Liu
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Feng Wang
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
| | - Xiaoqin Liu
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
| | - Fengyan Wang
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Qiu Sun
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Ting Lu
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Wenjuan Zhang
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, China.
- Second Clinical School, Lanzhou University, Lanzhou, China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
3
|
Vivoda Tomšič M, Korošec P, Kovač V, Bisdas S, Šurlan Popovič K. Dynamic contrast-enhanced MRI in malignant pleural mesothelioma: prediction of outcome based on DCE-MRI measurements in patients undergoing cytotoxic chemotherapy. BMC Cancer 2022; 22:191. [PMID: 35184730 PMCID: PMC8859879 DOI: 10.1186/s12885-022-09277-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background The malignant pleural mesothelioma (MPM) response rate to chemotherapy is low. The identification of imaging biomarkers that could help guide the most effective therapy approach for individual patients is highly desirable. Our aim was to investigate the dynamic contrast-enhanced (DCE) MR parameters as predictors for progression-free (PFS) and overall survival (OS) in patients with MPM treated with cisplatin-based chemotherapy. Methods Thirty-two consecutive patients with MPM were enrolled in this prospective study. Pretreatment and intratreatment DCE-MRI were scheduled in each patient. The DCE parameters were analyzed using the extended Tofts (ET) and the adiabatic approximation tissue homogeneity (AATH) model. Comparison analysis, logistic regression and ROC analysis were used to identify the predictors for the patient’s outcome. Results Patients with higher pretreatment ET and AATH-calculated Ktrans and ve values had longer OS (P≤.006). Patients with a more prominent reduction in ET-calculated Ktrans and kep values during the early phase of chemotherapy had longer PFS (P =.008). No parameter was identified to predict PFS. Pre-treatment ET-calculated Ktrans was found to be an independent predictive marker for longer OS (P=.02) demonstrating the most favourable discrimination performance compared to other DCE parameters with an estimated sensitivity of 89% and specificity of 78% (AUC 0.9, 95% CI 0.74-0.98, cut off > 0.08 min-1). Conclusions In the present study, higher pre-treatment ET-calculated Ktrans values were associated with longer OS. The results suggest that DCE-MRI might provide additional information for identifying MPM patients that may respond to chemotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09277-x.
Collapse
|
4
|
Qin Y, Yu X, Hou J, Hu Y, Li F, Wen L, Lu Q, Liu S. Prognostic Value of the Pretreatment Primary Lesion Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma. Acad Radiol 2019; 26:1473-1482. [PMID: 30772137 DOI: 10.1016/j.acra.2019.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Early identifying the long-term outcome of chemoradiotherapy is helpful for personalized treatment in nasopharyngeal carcinoma (NPC). This study aimed to investigate the prognostic significance of pretreatment quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for NPC. MATERIALS AND METHODS The relationships between the prognosis and pretreatment quantitative DCE-MRI (Ktrans, Kep, Ve, and fpv) values of the primary tumors were analyzed in 134 NPC patients who received chemoradiotherapy. Kaplan-Meier analysis was performed to calculate the local-regional relapse-free survival (LRRFS), local relapse-free survival (LRFS), regional relapse-free survival, distant metastasis-free survival (DMFS), progression-free survival, and overall survival rates. Cox proportional hazards model was used to explore the independent predictors for prognosis. RESULTS The local-failure group had significantly higher Ve (p = 0.033) and fpv values (p = 0.005) than the non-local-failure group. The Ve-high group showed significantly lower LRRFS (p = 0.015) , LRFS (p = 0.013) , DMFS (p = 0.027) and progression-free survival (p = 0.035) rates than the Ve-low group. The fpv-high group exhibited significantly lower LRRFS (p = 0.004) and LRFS (p = 0.005) rates than the fpv-low group. Ve was the independent predictor for LRRFS (p = 0.008), LRFS (p = 0.007), DMFS (p = 0.041), and overall survival (p = 0.022). fpv was the independent indicator for LRRFS (p = 0.003) and LRFS (p = 0.001). CONCLUSION Baseline quantitative DCE-MRI may be valuable in predicting the prognosis for NPC.
Collapse
Affiliation(s)
- Yuhui Qin
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China.
| | - Jing Hou
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Ying Hu
- Department of Radiotherapy, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Feiping Li
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Lu Wen
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Qiang Lu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| | - Siye Liu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, 283 Tongzipo Road, Changsha 410013, Hunan, PR China
| |
Collapse
|
5
|
Ellmann S, Seyler L, Evers J, Heinen H, Bozec A, Prante O, Kuwert T, Uder M, Bäuerle T. Prediction of early metastatic disease in experimental breast cancer bone metastasis by combining PET/CT and MRI parameters to a Model-Averaged Neural Network. Bone 2019; 120:254-261. [PMID: 30445200 DOI: 10.1016/j.bone.2018.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023]
Abstract
Macrometastases in bone are preceded by bone marrow invasion of disseminated tumor cells. This study combined functional imaging parameters from FDG-PET/CT and MRI in a rat model of breast cancer bone metastases to a Model-averaged Neural Network (avNNet) for the detection of early metastatic disease and prediction of future macrometastases. Metastases were induced in 28 rats by injecting MDA-MB-231 breast cancer cells into the right superficial epigastric artery, resulting in the growth of osseous metastases in the right hind leg of the animals. All animals received FDG-PET/CT and MRI at days 0, 10, 20 and 30 after tumor cell injection. In total, 18/28 rats presented with metastases at days 20 or 30 (64.3%). None of the animals featured morphologic bone lesions during imaging at day 10, and the imaging parameters acquired at day 10 did not differ significantly between animals with metastases at or after day 20 and those without (all p > 0.3). The avNNet trained with the imaging parameters acquired at day 10, however, achieved an accuracy of 85.7% (95% CI 67.3-96.0%) in predicting future macrometastatic disease (ROCAUC 0.90; 95% CI 0.76-1.00), and significantly outperformed the predictive capacities of all single parameters (all p ≤ 0.02). The integration of functional FDG-PET/CT and MRI parameters into an avNNet can thus be used to predict macrometastatic disease with high accuracy, and their combination might serve as a surrogate marker for bone marrow invasion as an early metastatic process that is commonly missed during conventional staging examinations.
Collapse
Affiliation(s)
- Stephan Ellmann
- Department of Radiology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Lisa Seyler
- Department of Radiology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Jochen Evers
- Department of Radiology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Henrik Heinen
- Department of Radiology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Olaf Prante
- Department of Nuclear Medicine, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Torsten Kuwert
- Department of Nuclear Medicine, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Michael Uder
- Department of Radiology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Tobias Bäuerle
- Department of Radiology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
6
|
Rahmim A, Bak-Fredslund KP, Ashrafinia S, Lu L, Schmidtlein CR, Subramaniam RM, Morsing A, Keiding S, Horsager J, Munk OL. Prognostic modeling for patients with colorectal liver metastases incorporating FDG PET radiomic features. Eur J Radiol 2019; 113:101-109. [PMID: 30927933 DOI: 10.1016/j.ejrad.2019.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/22/2018] [Accepted: 02/04/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We aimed to improve prediction of outcome for patients with colorectal liver metastases, via prognostic models incorporating PET-derived measures, including radiomic features that move beyond conventional standard uptake value (SUV) measures. PATIENTS AND METHODS A range of parameters including volumetric and heterogeneity measures were derived from FDG PET images of 52 patients with colorectal intrahepatic-only metastases (29 males and 23 females; mean age 62.9 years [SD 9.8; range 32-82]). The patients underwent PET/CT imaging as part of the clinical workup prior to final decision on treatment. Univariate and multivariate models were implemented, which included statistical considerations (to discourage false discovery and overfitting), to predict overall survival (OS), progression-free survival (PFS) and event-free survival (EFS). Kaplan-Meier survival analyses were performed, where the subjects were divided into high-risk and low-risk groups, from which the hazard ratios (HR) were computed via Cox proportional hazards regression. RESULTS Commonly-invoked SUV metrics performed relatively poorly for different prediction tasks (SUVmax HR = 1.48, 0.83 and 1.16; SUVpeak HR = 2.05, 1.93, and 1.64, for OS, PFS and EFS, respectively). By contrast, the number of liver metastases and metabolic tumor volume (MTV) each performed well (with respective HR values of 2.71, 2.61 and 2.42, and 2.62, 1.96 and 2.29, for OS, PFS and EFS). Total lesion glycolysis (TLG) also resulted in similar performance as MTV. Multivariate prognostic modeling incorporating different features (including those quantifying intra-tumor heterogeneity) resulted in further enhanced prediction. Specifically, HR values of 4.29, 4.02 and 3.20 (p-values = 0.00004, 0.0019 and 0.0002) were obtained for OS, PFS and EFS, respectively. CONCLUSIONS PET-derived measures beyond commonly invoked SUV parameters hold significant potential towards improved prediction of clinical outcome in patients with liver metastases, especially when utilizing multivariate models.
Collapse
Affiliation(s)
- Arman Rahmim
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA; Departments of Radiology and Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada.
| | | | - Saeed Ashrafinia
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA; Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rathan M Subramaniam
- Department of Radiology, University of Texas Southwestern Medical Center, TX, USA
| | - Anni Morsing
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Susanne Keiding
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Granata V, Fusco R, Avallone A, Catalano O, Piccirillo M, Palaia R, Nasti G, Petrillo A, Izzo F. A radiologist's point of view in the presurgical and intraoperative setting of colorectal liver metastases. Future Oncol 2018; 14:2189-2206. [PMID: 30084273 DOI: 10.2217/fon-2018-0080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multidisciplinary management of patients with metastatic colorectal cancer requires in each phase an adequate choice of the most appropriate imaging modality. The first challenging step is liver lesions detection and characterization, using several imaging modality ultrasound, computed tomography, magnetic resonance and positron emission tomography. The criteria to establish the metastases resectability have been modified. Not only the lesions number and site but also the functional volume remnant after surgery and the quality of the nontumoral liver must be taken into account. Radiologists should identify the liver functional volume remnant and during liver surgical procedures should collaborate with the surgeon to identify all lesions, including those that disappeared after the therapy, using intraoperative ultrasound with or without contrast medium.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, Istitutonazionale Tumori - IRCCS - Fondazione G Pascale, Napoli, Italia
| | - Roberta Fusco
- Radiology Division, Istitutonazionale Tumori - IRCCS - Fondazione G Pascale, Napoli, Italia
| | - Antonio Avallone
- Abdominal Oncology Division, Istitutonazionale Tumori - IRCSS - Fondazione G Pascale, Napoli, Italia
| | - Orlando Catalano
- Radiology Division, Istitutonazionale Tumori - IRCCS - Fondazione G Pascale, Napoli, Italia
| | - Mauro Piccirillo
- Hepatobiliary Surgical Oncology Division, Istitutonazionale Tumori - IRCCS - Fondazione G Pascale, Napoli, Italia
| | - Raffaele Palaia
- Hepatobiliary Surgical Oncology Division, Istitutonazionale Tumori - IRCCS - Fondazione G Pascale, Napoli, Italia
| | - Guglielmo Nasti
- Abdominal Oncology Division, Istitutonazionale Tumori - IRCSS - Fondazione G Pascale, Napoli, Italia
| | - Antonella Petrillo
- Radiology Division, Istitutonazionale Tumori - IRCCS - Fondazione G Pascale, Napoli, Italia
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, Istitutonazionale Tumori - IRCCS - Fondazione G Pascale, Napoli, Italia
| |
Collapse
|
8
|
Pahwa S, Liu H, Chen Y, Dastmalchian S, O'Connor G, Lu Z, Badve C, Yu A, Wright K, Chalian H, Rao S, Fu C, Vallines I, Griswold M, Seiberlich N, Zeng M, Gulani V. Quantitative perfusion imaging of neoplastic liver lesions: A multi-institution study. Sci Rep 2018; 8:4990. [PMID: 29563601 PMCID: PMC5862961 DOI: 10.1038/s41598-018-20726-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
We describe multi-institutional experience using free-breathing, 3D Spiral GRAPPA-based quantitative perfusion MRI in characterizing neoplastic liver masses. 45 patients (age: 48–72 years) were prospectively recruited at University Hospitals, Cleveland, USA on a 3 Tesla (T) MRI, and at Zhongshan Hospital, Shanghai, China on a 1.5 T MRI. Contrast-enhanced volumetric T1-weighted images were acquired and a dual-input single-compartment model used to derive arterial fraction (AF), distribution volume (DV) and mean transit time (MTT) for the lesions and normal parenchyma. The measurements were compared using two-tailed Student’s t-test, with Bonferroni correction applied for multiple-comparison testing. 28 hepatocellular carcinoma (HCC) and 17 metastatic lesions were evaluated. No significant difference was noted in perfusion parameters of normal liver parenchyma and neoplastic masses at two centers (p = 0.62 for AF, 0.015 for DV, 0.42 for MTT for HCC, p = 0.13 for AF, 0.97 for DV, 0.78 for MTT for metastases). There was statistically significant difference in AF, DV, and MTT of metastases and AF and DV of HCC compared to normal liver parenchyma (p < 0.5/9 = 0.0055). A statistically significant difference was noted in the MTT of metastases compared to hepatocellular carcinoma (p < 0.001*10-5). In conclusion, 3D Spiral-GRAPPA enabled quantitative free-breathing perfusion MRI exam provides robust perfusion parameters.
Collapse
Affiliation(s)
- Shivani Pahwa
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Hao Liu
- Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Chen
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Sara Dastmalchian
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory O'Connor
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Ziang Lu
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Chaitra Badve
- Radiology, University Hospitals, Cleveland, OH, United States
| | - Alice Yu
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Wright
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Hamid Chalian
- Radiology, University Hospitals, Cleveland, OH, United States
| | - Shengxiang Rao
- Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | | | - Mark Griswold
- Radiology, Case Western Reserve University, Cleveland, OH, United States.,Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Nicole Seiberlich
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Mengsu Zeng
- Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Vikas Gulani
- Radiology, Case Western Reserve University, Cleveland, OH, United States. .,Radiology, University Hospitals, Cleveland, OH, United States.
| |
Collapse
|
9
|
Advanced imaging to predict response to chemotherapy in colorectal liver metastases - a systematic review. HPB (Oxford) 2018; 20:120-127. [PMID: 29196021 DOI: 10.1016/j.hpb.2017.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The assessment of colorectal liver metastases (CRLM) after treatment with chemotherapy is challenging due to morphological and/or functional change without changes in size. The aim of this review was to assess the value of FDG-PET, FDG-PET-CT, CT and MRI in predicting response to chemotherapy in CRLM. METHODS A systematic review was undertaken based on PRISMA statement. PubMed and Embase were searched up to October 2016 for studies on the accuracy of PET, PET-CT, CT and MRI in predicting RECIST or metabolic response to chemotherapy and/or survival in patients with CRLM. Articles evaluating the assessment of response after chemotherapy were excluded. RESULTS Sixteen studies met the inclusion criteria and were included for further analysis. Study results were available for 6 studies for FDG-PET(-CT), 6 studies for CT and 9 studies for MRI. Generally, features predicting RECIST or metabolic response often predicted shorter survival. The ADC (apparent diffusion coefficient, on MRI) seems to be the most promising predictor of response and survival. In CT-related studies, few attenuation-related parameters and texture features show promising results. In FDG-PET(-CT), findings were ambiguous. CONCLUSION Radiological data on the prediction of response to chemotherapy for CRLM is relatively sparse and heterogeneous. Despite that, a promising parameter might be ADC. Second, there seems to be a seemingly counterintuitive correlation between parameters that predict a good response and also predict poor survival.
Collapse
|
10
|
Assessment of Aggressiveness of Breast Cancer Using Simultaneous 18F-FDG-PET and DCE-MRI: Preliminary Observation. Clin Nucl Med 2017; 41:e355-61. [PMID: 27187730 DOI: 10.1097/rlu.0000000000001254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE This study aims to investigate the feasibility of using simultaneous breast MRI and PET to assess the synergy of MR pharmacokinetic and fluorine-18 fluorodeoxyglucose (F-FDG) uptake data to characterize tumor aggressiveness in terms of metastatic burden and Ki67 status. METHODS Twelve consecutive patients underwent breast and whole-body PET/MRI. During the MR scan, PET events were simultaneously accumulated. MR contrast kinetic model parametric maps were computed using the extended Tofts model, including the volume transfer constant between blood plasma and the interstitial space (K), the transfer constant from the interstitial space to the blood plasma (kep), and the plasmatic volume fraction (Vp). RESULTS Patients with systemic metastases had a significantly lower kep compared to those with local disease (0.45 vs. 0.99 min, P = 0.011). Metastatic burden correlated positively with K and standardized uptake value (SUV), and negatively with kep. Ki67 positive tumors had a significantly greater K compared to Ki67 negative tumors (0.29 vs. 0.45 min, P = 0.03). A negative correlation was found between metabolic tumor volume and transfer constant (K or Kep). CONCLUSION These preliminary results suggest that MR pharmacokinetic parameters and FDG-PET may aid in the assessment of tumor aggressiveness and metastatic potential. Future studies are warranted with a larger cohort to further assess the role of pharmacokinetic modeling in simultaneous PET/MRI imaging.
Collapse
|
11
|
Shen FU, Lu J, Chen L, Wang Z, Chen Y. Diagnostic value of dynamic contrast-enhanced magnetic resonance imaging in rectal cancer and its correlation with tumor differentiation. Mol Clin Oncol 2016; 4:500-506. [PMID: 27073650 DOI: 10.3892/mco.2016.762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a novel imaging modality that can be used to reflect the microcirculation, although its value in diagnosing rectal cancer is unknown. The present study aimed to explore the clinical application of DCE-MRI in the preoperative diagnosis of rectal cancer, and its correlation with tumor differentiation. To achieve this, 40 pathologically confirmed patients with rectal cancer and 15 controls were scanned using DCE-MRI. The Tofts model was applied to obtain the perfusion parameters, including the plasma to extravascular volume transfer (Ktrans), the extravascular to plasma volume transfer (Kep), the extravascular fluid volume (Ve) and the initial area under the enhancement curve (iAUC). Receiver-operating characteristic (ROC) curves were plotted to determine the diagnostic value. The results demonstrated that the time-signal intensity curve of the rectal cancer lesion exhibited an outflow pattern. The Ktrans, Kep, Ve, and iAUC values were higher in the cancer patients compared with controls (P<0.05). The intraclass correlation coefficients of Ktrans, Kep, Ve and iAUC, as measured by two independent radiologists, were 0.991, 0.988, 0.972 and 0.984, respectively (all P<0.001), indicating a good consistency. The areas under the ROC curves for Ktrans and iAUC were both >0.9, resulting in a sensitivity and specificity of 100% and 93.3% for Ktrans, and of 92.5%, and 93.3% or 100%, for iAUC, respectively. In the 40 rectal cancer cases, there was a moderate correlation between Ktrans and iAUC, and pathological differentiation (0.3<r<0.8, all P<0.05). In conclusion, Ktrans and iAUC were associated with the presence of rectal cancer and differentiation, and therefore may provide novel insights into the preoperative diagnosis of rectal cancer.
Collapse
Affiliation(s)
- F U Shen
- Department of Radiology, Changhai Hospital, Shanghai 200433, P.R. China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Shanghai 200433, P.R. China
| | - Luguang Chen
- Department of Radiology, Changhai Hospital, Shanghai 200433, P.R. China
| | - Zhen Wang
- Department of Radiology, Changhai Hospital, Shanghai 200433, P.R. China
| | - Yukun Chen
- Department of Radiology, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
12
|
Liu X, Madhankumar AB, Miller PA, Duck KA, Hafenstein S, Rizk E, Slagle-Webb B, Sheehan JM, Connor JR, Yang QX. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA. Neuro Oncol 2015; 18:691-9. [PMID: 26519740 DOI: 10.1093/neuonc/nov263] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/24/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. METHODS The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. RESULTS The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. CONCLUSIONS IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| | - Achuthamangalam B Madhankumar
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| | - Patti A Miller
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| | - Kari A Duck
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| | - Susan Hafenstein
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| | - Elias Rizk
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| | - Becky Slagle-Webb
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| | - Jonas M Sheehan
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| | - Qing X Yang
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., A.B.M., K.A.D., E.R., B.S.-W., J.M.S., J.R.C., Q.X.Y.); Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (X.L., P.A.M., Q.X.Y.); Department of Microbiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania (S.H.)
| |
Collapse
|
13
|
Zheng X, Xiao L, Fan X, Huang N, Su Z, Xu X. Free breathing DCE-MRI with motion correction and its values for benign and malignant liver tumor differentiation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.jrid.2015.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
De Robertis R, Tinazzi Martini P, Demozzi E, Puntel G, Ortolani S, Cingarlini S, Ruzzenente A, Guglielmi A, Tortora G, Bassi C, Pederzoli P, D’Onofrio M. Prognostication and response assessment in liver and pancreatic tumors: The new imaging. World J Gastroenterol 2015; 21:6794-6808. [PMID: 26078555 PMCID: PMC4462719 DOI: 10.3748/wjg.v21.i22.6794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
Diffusion-weighted imaging (DWI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) are technical improvements of morphologic imaging that can evaluate functional properties of hepato-bilio-pancreatic tumors during conventional MRI or CT examinations. Nevertheless, the term “functional imaging” is commonly used to describe molecular imaging techniques, as positron emission tomography (PET) CT/MRI, which still represent the most widely used methods for the evaluation of functional properties of solid neoplasms; unlike PET or single photon emission computed tomography, functional imaging techniques applied to conventional MRI/CT examinations do not require the administration of radiolabeled drugs or specific equipments. Moreover, DWI and DCE-MRI can be performed during the same session, thus providing a comprehensive “one-step” morphological and functional evaluation of hepato-bilio-pancreatic tumors. Literature data reveal that functional imaging techniques could be proposed for the evaluation of these tumors before treatment, given that they may improve staging and predict prognosis or clinical outcome. Microscopic changes within neoplastic tissues induced by treatments can be detected and quantified with functional imaging, therefore these techniques could be used also for post-treatment assessment, even at an early stage. The aim of this editorial is to describe possible applications of new functional imaging techniques apart from molecular imaging to hepatic and pancreatic tumors through a review of up-to-date literature data, with a particular emphasis on pathological correlations, prognostic stratification and post-treatment monitoring.
Collapse
|
15
|
Tam HH, Cook GJ, Chau I, Drake B, Zerizer I, Du Y, Cunningham D, Koh DM, Chua SSC. The role of routine clinical pretreatment 18F-FDG PET/CT in predicting outcome of colorectal liver metastasis. Clin Nucl Med 2015; 40:e259-64. [PMID: 25742225 DOI: 10.1097/rlu.0000000000000744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of this study was to determine the value of SUV-based metabolic parameters derived from pretreatment F-FDG PET/CT of colorectal liver metastases in predicting disease response, progression-free survival (PFS), and overall survival (OS). PATIENTS AND METHODS We retrospectively reviewed 70 colorectal patients with liver metastases who underwent pretreatment F-FDG PET/CT. SUVmean, SUVmax, TLG (total lesion glycolysis), metabolic tumor volume, and metabolic tumor diameter were the metabolic parameters derived from volume of interest analysis of the most FDG-avid liver lesion in each subject. Clinical and laboratory parameters were recorded. Tumor response was assessed by response evaluation criteria in solid tumors 1.1 criteria at 12 weeks after treatment. Associations between tumor response, metabolic parameters, and clinical/laboratory parameters were examined by 1-way analysis of variance. The relationship of the metabolic parameters with PFS and OS was determined by Kaplan-Meier analyses and further confirmed with multivariate Cox regression analyses. RESULTS SUVmean less than 4.48, SUVmax less than 6.59, TLG less than 75.2, metabolic tumor volume less than 4.49 cm, and hemoglobin level greater than or equal to 11 g/dL were associated with longer PFS (P < 0.05). Prior surgery or radiofrequency ablation to the liver metastases was the only additional factor shown to be associated with longer OS. CONCLUSIONS SUV-based metabolic parameters derived from pretreatment F-FDG PET/CT can predict PFS in colorectal liver metastases.
Collapse
Affiliation(s)
- Henry H Tam
- From the *Department of Radiology, Royal Marsden Hospital, Sutton; †Imaging Sciences and Biomedical Engineering, King's College, London and Guys & St Thomas's Hospitals, Strand, London; ‡Department of Medical Oncology, Royal Marsden Hospital, Sutton; §Department of Nuclear Medicine, Plymouth Hospitals NHS Trust, Derriford Hospital, Plymouth; and ║Department of Nuclear Medicine and PET, Royal Marsden Hospital, Sutton, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dassler K, Scholle FD, Schütz G. Dynamic gadobutrol-enhanced MRI predicts early response to antivascular but not to antiproliferation therapy in a mouse xenograft model. Magn Reson Med 2013; 71:1826-33. [PMID: 23754607 DOI: 10.1002/mrm.24815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/10/2022]
Abstract
PURPOSE Dynamic contrast-enhanced magnetic resonance imaging has been described as a method to assess tumor vascularity and, therefore, is discussed as a noninvasive biomarker for drug response prediction in tumor therapies. Because antiangiogenic and antiproliferative drugs are frequently combined for therapy, the aim was to investigate (1) the early response predictability and (2) the extent to which these therapy types influence dynamic contrast-enhanced magnetic resonance imaging with gadobutrol soon after therapy initiation. METHODS Mice bearing a KPL-4 tumor were treated with either bevacizumab as an antiangiogenic drug or trastuzumab as a cytotoxic anti-tumor drug. The gadobutrol-contrast agent exposure of the tumor was recorded before and at several time points after therapy initiation to examine the response prediction by dynamic contrast-enhanced magnetic resonance imaging. RESULTS Both therapies resulted in significant tumor growth attenuation over 30 days of therapy, but the individual response to each therapy was different. Specifically, bevacizumab affected the dynamic gadobutrol-enhanced MRI-derived area under the curve at early time points (≤8 days), while trastuzumab did not. CONCLUSION The area under the curve obtained from dynamic gadobutrol-enhanced MRI predicted early tumor response to the antiangiogenic drug bevacizumab, but not to the anti-tumor cell drug trastuzumab. This indicates that the area under the curve may be useful for assessing early antiangiogenic but not antiproliferative drug effects.
Collapse
Affiliation(s)
- Katrin Dassler
- MR & CT Contrast Media Research, Bayer Pharma AG, Berlin, Germany
| | | | | |
Collapse
|
17
|
Standardized added metabolic activity (SAM) IN ¹⁸F-FDG PET assessment of treatment response in colorectal liver metastases. Eur J Nucl Med Mol Imaging 2013; 40:1214-22. [PMID: 23636802 DOI: 10.1007/s00259-013-2421-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/01/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Standardized added metabolic activity (SAM) is a PET parameter for assessing the total metabolic load of malignant processes, avoiding partial volume effects and lesion segmentation. The potential role of this parameter in the assessment of response to chemotherapy and bevacizumab was tested in patients with metastatic colorectal cancer with potentially resectable liver metastases (mCRC). METHODS (18)F-FDG PET/CT was performed in 18 mCRC patients with liver metastases before treatment and after five cycles of FOLFOX/FOLFIRI and bevacizumab. Of the 18 patients, 16 subsequently underwent resection of liver metastases. Baseline and follow-up SUVmax, and SAM as well as reduction in SUVmax (∆SUVmax) and SAM (∆SAM) of all liver metastases were correlated with morphological response, and progression-free and overall survival (PFS and OS). RESULTS A significant reduction in metabolic activity of the liver metastases was seen after chemotherapy with a median ∆SUVmax of 25.3% and ∆SAM of 94.5% (p = 0.033 and 0.003). Median baseline SUVmax and SAM values were significantly different between morphological responders and nonresponders (3.8 vs. 7.2, p = 0.021; and 34 vs. 211, p = 0.002, respectively), but neither baseline PET parameters nor morphological response was correlated with PFS or OS. Follow-up SUVmax and SAM as well as ∆SAM were found to be prognostic factors. The median PFS and OS in the patient group with a high follow-up SUVmax were 10.4 months and 32 months, compared to a median PFS of 14.7 months and a median OS which had not been reached in the group with a low follow-up SUVmax (p = 0.01 and 0.003, respectively). The patient group with a high follow-up SAM and a low ∆SAM had a median PFS and OS of 9.4 months and 32 months, whereas the other group had a median PFS of 14.7 months and a median OS which had not been reached (p = 0.002 for both PFS and OS). CONCLUSION (18)F-FDG PET imaging is a useful tool to assess treatment response and predict clinical outcome in patients with mCRC who undergo chemotherapy before liver metastasectomy. Follow-up SUVmax, follow-up SAM and ∆SAM were found to be significant prognostic factors for PFS and OS.
Collapse
|
18
|
Contrast agents as a biological marker in magnetic resonance imaging of the liver: conventional and new approaches. ACTA ACUST UNITED AC 2012; 37:164-79. [PMID: 21516381 DOI: 10.1007/s00261-011-9734-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver imaging is an important clinical area in everyday practice. The clinical meaning of different lesion types in the liver can be quite different. Therefore, the result of imaging studies of the liver can change therapeutic concepts fundamentally. Contrast agents are used in the majority of MR examinations of the liver parenchyma-despite the already good soft-tissue contrast in plain MRI. This can be explained by the advantages in lesion detection and characterization of contrast-enhanced MRI of the liver. Beyond the qualitative evaluation of contrast-enhanced liver MR examinations, quantification of parameters will be the demand of the future. This can be achieved by perfusion MRI, also called dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Its basic principles and different clinical applications will be discussed in this article. Definite cut-off values to determine disease or therapeutic response will help to increase the objectivity and reliability of liver MRI in future. This is especially important in the oncological setting, where modern therapies cannot be assessed based on changes in size only.
Collapse
|
19
|
De Bruyne S, Van Damme N, Smeets P, Ferdinande L, Ceelen W, Mertens J, Van de Wiele C, Troisi R, Libbrecht L, Laurent S, Geboes K, Peeters M. Value of DCE-MRI and FDG-PET/CT in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br J Cancer 2012; 106:1926-33. [PMID: 22596235 PMCID: PMC3388560 DOI: 10.1038/bjc.2012.184] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The purpose of this study was to assess the role of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and 18F-fluorodeoxyglucose positron emission tomography computed tomography (FDG-PET/CT) for evaluation of response to chemotherapy and bevacizumab and for prediction of progression-free survival (PFS) in patients with metastatic colorectal cancer (mCRC) with potentially resectable liver lesions. Methods: A total of 19 mCRC patients were treated with FOLFOX/FOLFIRI and bevacizumab followed by surgery. Dynamic contrast-enhanced magnetic resonance imaging and FDG-PET/CT were performed before treatment and after cycle 5. PET results were quantified by calculating maximum standardised uptake value (SUVmax) whereas area under the enhancement curve (AUC), initial AUC (iAUC) and the endothelial transfer constant (Ktrans) were used to quantify DCE-MRI. Pathological analysis of the resection specimen was performed, including measurement of microvessel density (MVD) and proliferation index. Results: Both AUC and iAUC were significantly decreased following bevacizumab therapy (median change of 22% (P=0.002) and 40% (P=0.001) for AUC and iAUC, respectively). Progression-free survival benefit was shown for patients with >40% reduction in Ktrans (P=0.019). In the group of radiological responders, the median baseline SUVmax was 3.77 (IQR: 2.88–5.60) compared with 7.20 (IQR: 4.67–8.73) in nonresponders (P=0.021). A higher follow-up SUVmax was correlated with worse PFS (P=0.012). Median MVD was 10.9. Progression-free survival was significantly shorter in patients with an MVD greater than 10, compared with patients with lower MVD (10 months compared with 16 months, P=0.016). Conclusion: High relative decrease in Ktrans, low follow-up SUVmax and low MVD are favourable prognostic factors for mCRC patients treated with bevacizumab before surgery.
Collapse
Affiliation(s)
- S De Bruyne
- Department of Respiratory Medicine, Ghent University Hospital, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
de Jong GM, Hendriks T, Bleichrodt RP, Dekker HM, Mus RD, Gotthardt M, Visser EP, Oyen WJ, Boerman OC. 18F-2-Deoxy-2-Fluoro-D-Glucose Positron Emission Tomography, Computed Tomography, and Magnetic Resonance Imaging for the Detection of Experimental Colorectal Liver Metastases. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the treatment of colorectal liver metastases, evaluation of treatment efficacy is of the utmost importance for decision making. The aim of the present study was to explore the ability of preclinical imaging modalities to detect experimental liver metastases. Nine male Wag/Rij rats underwent a laparotomy with intraportal injection of CC531 tumor cells. On days 7, 10, and 14 after tumor induction, sequential positron emission tomography (PET), computed tomography (CT), and magnetic resonance imaging (MRI) scans were acquired of each rat. At each time point, three rats were euthanized and the metastases in the liver were documented histologically. Topographically, the liver was divided into eight segments and the image findings were compared on a segment-by-segment basis with the histopathologic findings. Sixty-four liver segments were analyzed, 20 of which contained tumor deposits. The overall sensitivity of PET, CT, and MRI was 30%, 25%, and 20%, respectively. For the detection of tumors with a histologic diameter exceeding 1 mm ( n = 8), the sensitivity of PET, CT, and MRI was 63%, 38%, and 38%, respectively. The overall specificity of PET, CT, and MRI was 98%, 100%, and 93%, respectively. This study showed encouraging detectability and sensitivity for preclinical imaging of small liver tumors and provides valuable information on the imaging techniques for designing future protocols.
Collapse
Affiliation(s)
- Gabie M. de Jong
- From the Departments of Nuclear Medicine, Radiology, and Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Thijs Hendriks
- From the Departments of Nuclear Medicine, Radiology, and Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Robert P. Bleichrodt
- From the Departments of Nuclear Medicine, Radiology, and Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Helena M. Dekker
- From the Departments of Nuclear Medicine, Radiology, and Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Roel D.M. Mus
- From the Departments of Nuclear Medicine, Radiology, and Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Martin Gotthardt
- From the Departments of Nuclear Medicine, Radiology, and Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Eric P. Visser
- From the Departments of Nuclear Medicine, Radiology, and Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Wim J.G. Oyen
- From the Departments of Nuclear Medicine, Radiology, and Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Otto C. Boerman
- From the Departments of Nuclear Medicine, Radiology, and Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
21
|
|
22
|
Engledow AH, Skipworth JRA, Pakzad F, Imber C, Ell PJ, Groves AM. The role of 18FDG PET/CT in the management of colorectal liver metastases. HPB (Oxford) 2012; 14:20-5. [PMID: 22151447 PMCID: PMC3252987 DOI: 10.1111/j.1477-2574.2011.00378.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Surgical resection remains the only potentially curative treatment for colorectal liver metastases (CLM). However, involvement of both the hepatic lobes or extrahepatic disease (EHD) can be a contra-indication for resection. The aim of the present study was to examine the addition of combined positron emission and computed tomography (PET/CT) to CLM staging to assess the effects upon staging and management. METHODS All CLM patients referred to a single centre between January 2005 and January 2009 were prospectively included. All underwent routine staging (clinical examination and computed tomography), followed by a whole body (18) fluoro-deoxy-glucose ((18)FDG)-PET/CT scan and Fong clinical risk score calculation. RESULTS Sixty-four patients were included [63% male with a median age of 63 years (age range 32-79 years)]. The addition of PET/CT led to disease upstaging in 20 patients (31%) and downstaging in two patients (3%). EHD was found in 24% of low-risk patients (Fong score 0-2) as compared with 44% of high-risk patients (Fong score 3-5) (P= 0.133). There was a trend towards a greater influence upon management in patients with a low score (44% vs. 17%; P= 0.080). CONCLUSION The addition of PET/CT led to management changes in over one-third of patients but there was no correlation between alterations in staging or management and the Fong clinical risk score; suggesting that PET/CT should be utilized, where available, in the pre-operative staging of CLM patients.
Collapse
Affiliation(s)
- Alec H Engledow
- Department of Surgery and Interventional Science, University College LondonLondon, UK,Department of Colorectal and Laparoscopic Surgery, University College London Hospital NHS TrustLondon, UK
| | - James RA Skipworth
- Department of Surgery and Interventional Science, University College LondonLondon, UK,Department of Hepatopancreaticobiliary Surgery, Royal Free Hospital NHS TrustLondon, UK
| | - Farrokh Pakzad
- Department of Surgery and Interventional Science, University College LondonLondon, UK
| | - Charles Imber
- Department of Hepatopancreaticobiliary Surgery, Royal Free Hospital NHS TrustLondon, UK
| | - Peter J Ell
- Department of Nuclear Medicine, University College London Hospital NHS TrustLondon, UK
| | - Ashley M Groves
- Department of Nuclear Medicine, University College London Hospital NHS TrustLondon, UK
| |
Collapse
|
23
|
|
24
|
Vriens D, de Geus-Oei LF, Heerschap A, van Laarhoven HWM, Oyen WJG. Vascular and metabolic response to bevacizumab-containing regimens in two patients with colorectal liver metastases measured by dynamic contrast-enhanced MRI and dynamic 18F-FDG-PET. Clin Colorectal Cancer 2011; 10:E1-5. [PMID: 21609927 DOI: 10.3816/ccc.2011.n.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Early monitoring of response to treatment is one of the cornerstones of personalized treatment. As new and often expensive targeted therapies, which are tumoristatic rather than tumoricidal, become available, new demands are posed on response assessment. Bevacizumab, an antiangiogenic agent causing normalization of the tumor microvasculature, potentiates the effect of cytotoxic agents on colorectal liver metastases. It is known that assessment of glucose metabolism by (dynamic) positron emission tomography using [(18)F]-2-fluoro-2-deoxy-D-glucose ((18)F-FDG PET) can be used as an early surrogate endpoint to determine treatment efficacy. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to quantify functional tumor vasculature (permeability, vascular surface area). Here, we describe the response of colorectal liver metastases to cytotoxic regimens including bevacizumab using both (18)F-FDG PET and DCE-MRI in 2 cases. In both cases, a large reduction in glucose metabolic rate and functional tumor vasculature are observed after 3 treatment cycles.
Collapse
Affiliation(s)
- Dennis Vriens
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, the Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Applications of molecular imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 95:237-98. [PMID: 21075334 DOI: 10.1016/b978-0-12-385071-3.00009-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response, and new therapy development is steadily growing and has already significantly impacted on clinical management of cancer. In this chapter, we overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging), (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g., single-photon emission computed tomography (SPECT) and positron emission tomography (PET)). We review the use of molecular reporters of biological processes (e.g., apoptosis and protein kinase activity) for high-throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology.
Collapse
|