1
|
Kawabori M, Kuroda S, Shichinohe H, Kahata K, Shiratori S, Ikeda S, Harada T, Hirata K, Tha KK, Aragaki M, Terasaka S, Ito YM, Nishimoto N, Ohnishi S, Yabe I, Kudo K, Houkin K, Fujimura M. Intracerebral transplantation of MRI-trackable autologous bone marrow stromal cells for patients with subacute ischemic stroke. MED 2024; 5:432-444.e4. [PMID: 38547868 DOI: 10.1016/j.medj.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Ischemic stroke is one of the leading causes of death and neurological disability worldwide, and stem cell therapy is highly expected to reverse the sequelae. This phase 1/2, first-in-human study evaluated the safety, feasibility, and monitoring of an intracerebral-transplanted magnetic resonance imaging (MRI)-trackable autologous bone marrow stromal cell (HUNS001-01) for patients with subacute ischemic stroke. METHODS The study included adults with severe disability due to ischemic stroke. HUNS001-01 cultured with human platelet lysates and labeled with superparamagnetic iron oxide was stereotactically transplanted into the peri-infarct area 47-64 days after ischemic stroke onset (dose: 2 or 5 × 107 cells). Neurological and radiographic evaluations were performed throughout 1 year after cell transplantation. The trial was registered at UMIN Clinical Trial Registry (number UMIN000026130). FINDINGS All seven patients who met the inclusion criteria successfully achieved cell expansion, underwent intracerebral transplantation, and completed 1 year of follow-up. No product-related adverse events were observed. The median National Institutes of Health Stroke Scale and modified Rankin scale scores before transplantation were 13 and 4, which showed improvements of 1-8 and 0-2, respectively. Cell tracking proved that the engrafted cells migrated toward the infarction border area 1-6 months after transplantation, and the quantitative susceptibility mapping revealed that cell signals at the migrated area constantly increased throughout the follow-up period up to 34% of that of the initial transplanted site. CONCLUSIONS Intracerebral transplantation of HUNS001-01 was safe and well tolerated. Cell tracking shed light on the therapeutic mechanisms of intracerebral transplantation. FUNDING This work was supported by the Japan Agency for Medical Research and Development (AMED; JP17bk0104045 and JP20bk0104011).
Collapse
Affiliation(s)
- Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.
| | - Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hideo Shichinohe
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Kaoru Kahata
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Souichi Shiratori
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Satoshi Ikeda
- Department of Rehabilitation, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Taisuke Harada
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Khin Khin Tha
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Masato Aragaki
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoichi M Ito
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Naoki Nishimoto
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido 060-8638, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Hokkaido University Graduate School of Pharmacology, Sapporo, Hokkaido 060-8638, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
2
|
Clinical Trials of Stem Cell Therapy for Cerebral Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21197380. [PMID: 33036265 PMCID: PMC7582939 DOI: 10.3390/ijms21197380] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
Despite recent developments in innovative treatment strategies, stroke remains one of the leading causes of death and disability worldwide. Stem cell therapy is currently attracting much attention due to its potential for exerting significant therapeutic effects on stroke patients. Various types of cells, including bone marrow mononuclear cells, bone marrow/adipose-derived stem/stromal cells, umbilical cord blood cells, neural stem cells, and olfactory ensheathing cells have enhanced neurological outcomes in animal stroke models. These stem cells have also been tested via clinical trials involving stroke patients. In this article, the authors review potential molecular mechanisms underlying neural recovery associated with stem cell treatment, as well as recent advances in stem cell therapy, with particular reference to clinical trials and future prospects for such therapy in treating stroke.
Collapse
|
3
|
Wang Z, Higashikawa K, Yasui H, Kuge Y, Ohno Y, Kihara A, Midori YA, Houkin K, Kawabori M. FTY720 Protects Against Ischemia-Reperfusion Injury by Preventing the Redistribution of Tight Junction Proteins and Decreases Inflammation in the Subacute Phase in an Experimental Stroke Model. Transl Stroke Res 2020; 11:1103-1116. [PMID: 32103462 PMCID: PMC7496052 DOI: 10.1007/s12975-020-00789-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Injury due to brain ischemia followed by reperfusion (I/R) may be an important therapeutic target in the era of thrombectomy. FTY720, a widely known sphingosine-1-phosphate receptor agonist, exerts various neuroprotective effects. The aim of this study was to examine the protective effect of FTY720 with respect to I/R injury, especially focusing on blood-brain barrier (BBB) protection and anti-inflammatory effects. Male rats were subjected to transient ischemia and administered vehicle or 0.5 or 1.5 mg/kg of FTY720 immediately before reperfusion. Positron emission tomography (PET) with [18F]DPA-714 was performed 2 and 9 days after the insult to serially monitor neuroinflammation. Bovine and rat brain microvascular endothelial cells (MVECs) were also subjected to oxygen-glucose deprivation (OGD) and reperfusion, and administered FTY720, phosphorylated-FTY720 (FTY720-P), or their inhibitor. FTY720 dose-dependently reduced cell death, the infarct size, cell death including apoptosis, and inflammation. It also ameliorated BBB disruption and neurological deficits compared to in the vehicle group. PET indicated that FTY720 significantly inhibited the worsening of inflammation in later stages. FTY720-P significantly prevented the intracellular redistribution of tight junction proteins but did not increase their mRNA expression. These results suggest that FTY720 can ameliorate I/R injury by protecting the BBB and regulating neuroinflammation.
Collapse
Affiliation(s)
- Zifeng Wang
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kei Higashikawa
- Central Institutes of Isotope Science (Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hironobu Yasui
- Central Institutes of Isotope Science (Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kuge
- Central Institutes of Isotope Science (Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yenari A Midori
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
4
|
Yun CW, Lee SH. Enhancement of Functionality and Therapeutic Efficacy of Cell-Based Therapy Using Mesenchymal Stem Cells for Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20040982. [PMID: 30813471 PMCID: PMC6412804 DOI: 10.3390/ijms20040982] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease usually triggers coronary heart disease, stroke, and ischemic diseases, thus promoting the development of functional failure. Mesenchymal stem cells (MSCs) are cells that can be isolated from various human tissues, with multipotent and immunomodulatory characteristics to help damaged tissue repair and avoidance of immune responses. Much research has proved the feasibility, safety, and efficiency of MSC-based therapy for cardiovascular disease. Despite the fact that the precise mechanism of MSCs remains unclear, their therapeutic capability to treat ischemic diseases has been tested in phase I/II clinical trials. MSCs have the potential to become an effective therapeutic strategy for the treatment of ischemic and non-ischemic cardiovascular disorders. The molecular mechanism underlying the efficacy of MSCs in promoting engraftment and accelerating the functional recovery of injury sites is still unclear. It is hypothesized that the mechanisms of paracrine effects for the cardiac repair, optimization of the niche for cell survival, and cardiac remodeling by inflammatory control are involved in the interaction between MSCs and the damaged myocardial environment. This review focuses on recent experimental and clinical findings related to cardiovascular disease. We focus on MSCs, highlighting their roles in cardiovascular disease repair, differentiation, and MSC niche, and discuss their therapeutic efficacy and the current status of MSC-based cardiovascular disease therapies.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 34538, Korea.
| |
Collapse
|
5
|
Tan C, Zhao S, Higashikawa K, Wang Z, Kawabori M, Abumiya T, Nakayama N, Kazumata K, Ukon N, Yasui H, Tamaki N, Kuge Y, Shichinohe H, Houkin K. [ 18F]DPA-714 PET imaging shows immunomodulatory effect of intravenous administration of bone marrow stromal cells after transient focal ischemia. EJNMMI Res 2018; 8:35. [PMID: 29717383 PMCID: PMC5930298 DOI: 10.1186/s13550-018-0392-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background The potential application of bone marrow stromal cell (BMSC) therapy in stroke has been anticipated due to its immunomodulatory effects. Recently, positron emission tomography (PET) with [18F]DPA-714, a translocator protein (TSPO) ligand, has become available for use as a neural inflammatory indicator. We aimed to evaluate the effects of BMSC administration after transient middle cerebral artery occlusion (MCAO) using [18F]DPA-714 PET. The BMSCs or vehicle were administered intravenously to rat MCAO models at 3 h after the insult. Neurological deficits, body weight, infarct volume, and histology were analyzed. [18F]DPA-714 PET was performed 3 and 10 days after MCAO. Results Rats had severe neurological deficits and body weight loss after MCAO. Cell administration ameliorated these effects as well as the infarct volume. Although weight loss occurred in the spleen and thymus, cell administration suppressed it. In both vehicle and BMSC groups, [18F]DPA-714 PET showed a high standardized uptake value (SUV) around the ischemic area 3 days after MCAO. Although SUV was increased further 10 days after MCAO in both groups, the increase was inhibited in the BMSC group, significantly. Histological analysis showed that an inflammatory reaction occurred in the lymphoid organs and brain after MCAO, which was suppressed in the BMSC group. Conclusions The present results suggest that BMSC therapy could be effective in ischemic stroke due to modulation of systemic inflammatory responses. The [18F]DPA-714 PET/CT system can accurately demonstrate brain inflammation and evaluate the BMSC therapeutic effect in an imaging context. It has great potential for clinical application.
Collapse
Affiliation(s)
- Chengbo Tan
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zifeng Wang
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideo Shichinohe
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan. .,Division of Clinical Research Administration, Hokkaido University Hospital, Sapporo, Japan.
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
6
|
Human Recombinant Peptide Sponge Enables Novel, Less Invasive Cell Therapy for Ischemic Stroke. Stem Cells Int 2018; 2018:4829534. [PMID: 29765415 PMCID: PMC5911312 DOI: 10.1155/2018/4829534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/17/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Bone marrow stromal cell (BMSC) transplantation has the therapeutic potential for ischemic stroke. However, it is unclear which delivery routes would yield both safety and maximal therapeutic benefits. We assessed whether a novel recombinant peptide (RCP) sponge, that resembles human collagen, could act as a less invasive and beneficial scaffold in cell therapy for ischemic stroke. BMSCs from green fluorescent protein-transgenic rats were cultured and Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAo). A BMSC-RCP sponge construct was transplanted onto the ipsilateral intact neocortex 7 days after MCAo. A BMSC suspension or vehicle was transplanted into the ipsilateral striatum. Rat motor function was serially evaluated and histological analysis was performed 5 weeks after transplantation. The results showed that BMSCs could proliferate well in the RCP sponge and the BMSC-RCP sponge significantly promoted functional recovery, compared with the vehicle group. Histological analysis revealed that the RCP sponge provoked few inflammatory reactions in the host brain. Moreover, some BMSCs migrated to the peri-infarct area and differentiated into neurons in the BMSC-RCP sponge group. These findings suggest that the RCP sponge may be a promising candidate for animal protein-free scaffolds in cell therapy for ischemic stroke in humans.
Collapse
|
7
|
Shichinohe H, Kawabori M, Iijima H, Teramoto T, Abumiya T, Nakayama N, Kazumata K, Terasaka S, Arato T, Houkin K. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW): a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke. BMC Neurol 2017; 17:179. [PMID: 28886699 PMCID: PMC5591569 DOI: 10.1186/s12883-017-0955-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/28/2017] [Indexed: 11/20/2022] Open
Abstract
Background Stroke is a leading cause of death and disability, and despite intensive research, few treatment options exist. However, a recent breakthrough in cell therapy is expected to reverse the neurological sequelae of stroke. Although some pioneer studies on the use of cell therapy for treating stroke have been reported, certain problems remain unsolved. Recent studies have demonstrated that bone marrow stromal cells (BMSCs) have therapeutic potential against stroke. We investigated the use of autologous BMSC transplantation as a next-generation cell therapy for treating stroke. In this article, we introduce the protocol of a new clinical trial, the Research on Advanced Intervention using Novel Bone marrOW stem cell (RAINBOW). Methods/design RAINBOW is a phase 1, open-label, uncontrolled, dose-response study, with the primary aim to determine the safety of the autologous BMSC product HUNS001–01 when administered to patients with acute ischemic stroke. Estimated enrollment is 6–10 patients suffering from moderate to severe neurological deficits. Approximately 50 mL of the bone marrow is extracted from the iliac bone of each patient 15 days or later from the onset. BMSCs are cultured with allogeneic human platelet lysate (PL) as a substitute for fetal calf serum and are labeled with superparamagnetic iron oxide for cell tracking using magnetic resonance imaging (MRI). HUNS001–01 is stereotactically administered around the area of infarction in the subacute phase. Each patient will be administered a dose of 20 or 50 million cells. Neurological scoring, MRI for cell tracking, 18F–fuorodeoxyglucose positron emission tomography, and 123I–Iomazenil singlephoton emission computed tomography will be performed for 1 year after the administration. Discussion This is a first-in-human trial for HUNS001–01 to the patients with acute ischemic stroke. We expect that intraparenchymal injection can be a more favorable method for cell delivery to the lesion and improvement of the motor function than intravenous infusion. Moreover, it is expected that the bio-imaging techniques can clarify the therapeutic mechanisms. Trial registration The trial was registered at The University Hospital Medical Information Network on February 22, 2017 (UNIN ID: UMIN000026130). The findings of this trial will be disseminated to patients and through peer-reviewed publications and international presentations.
Collapse
Affiliation(s)
- Hideo Shichinohe
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan. .,Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo, 060-8648, Japan.
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroaki Iijima
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Tuyoshi Teramoto
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Teruyo Arato
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Siddiqui S, Kadlecek S, Pourfathi M, Xin Y, Mannherz W, Hamedani H, Drachman N, Ruppert K, Clapp J, Rizi R. The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv Drug Deliv Rev 2017; 113:3-23. [PMID: 27599979 PMCID: PMC5783573 DOI: 10.1016/j.addr.2016.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023]
Abstract
Until recently, molecular imaging using magnetic resonance (MR) has been limited by the modality's low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized (HP) MR overcomes this limitation by substantially enhancing the signal of certain biologically important probes through a process known as external nuclear polarization, enabling real-time assessment of tissue function and metabolism. The metabolic information obtained by HP MR imaging holds significant promise in the clinic, where it could play a critical role in disease diagnosis and therapeutic monitoring. This review will provide a comprehensive overview of the developments made in the field of hyperpolarized MR, including advancements in polarization techniques and delivery, probe development, pulse sequence optimization, characterization of healthy and diseased tissues, and the steps made towards clinical translation.
Collapse
Affiliation(s)
- Sarmad Siddiqui
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Mannherz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Shichinohe H, Houkin K. Cell Therapy for Stroke: Review of Previous Clinical Trials and Introduction of Our New Trials. Neurol Med Chir (Tokyo) 2016; 56:592-596. [PMID: 27302193 PMCID: PMC5066079 DOI: 10.2176/nmc.st.2016-0087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stroke is still a leading cause of death and disability, and despite intensive research, few treatment options exist. A recent breakthrough in cell therapy is expected to reverse the neurological sequelae of stroke. Although some pioneer studies on the use of cell therapy for the treatment of stroke have been reported, certain problems still remain unsolved. We investigated the use of autologous bone marrow stromal cell (BMSC) transplantation for the treatment of stroke, to develop it as the next-generation cell therapy. In this study, we introduce the preparation of a new clinical trial, the Research on Advanced Intervention using Novel Bone marrow stem cell (RAINBOW) study. The trial will start in 2016, and we hope that it will not only be helpful for treating patients but also for clarifying the therapeutic mechanisms. Moreover, we review stem cell therapeutics as an emerging paradigm in stroke (STEPS) and the guidelines for the development of cell therapy for stroke in the United States as well as introduce the development of new guidelines in Japan. These guidelines are expected to encourage the development of cell therapy for stroke management.
Collapse
Affiliation(s)
- Hideo Shichinohe
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine
| | | |
Collapse
|
10
|
Zhang Y, Qiu B, Wang J, Yao Y, Wang C, Liu J. RETRACTED ARTICLE: Effects of BDNF-Transfected BMSCs on Neural Functional Recovery and Synaptophysin Expression in Rats with Cerebral Infarction. Mol Neurobiol 2016; 54:3813-3824. [DOI: 10.1007/s12035-016-9946-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/26/2016] [Indexed: 01/18/2023]
|
11
|
Zhao S, Fatema CN, Zhao J, Nan G. Advanced Molecular Imaging for Exploring Classic Conditioning and Extinction. J Nucl Med 2016; 57:1333. [PMID: 27199357 DOI: 10.2967/jnumed.116.174383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 11/16/2022] Open
Affiliation(s)
- Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | | | - Jingmin Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells Int 2016; 2016:6810562. [PMID: 27274738 PMCID: PMC4870368 DOI: 10.1155/2016/6810562] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is an important health issue corresponding to the second cause of mortality and first cause of severe disability with no effective treatments after the first hours of onset. Regenerative approaches such as cell therapy provide an increase in endogenous brain structural plasticity but they are not enough to promote a complete recovery. Tissue engineering has recently aroused a major interesting development of biomaterials for use into the central nervous system. Many biomaterials have been engineered based on natural compounds, synthetic compounds, or a mix of both with the aim of providing polymers with specific properties. The mechanical properties of biomaterials can be exquisitely regulated forming polymers with different stiffness, modifiable physical state that polymerizes in situ, or small particles encapsulating cells or growth factors. The choice of biomaterial compounds should be adapted for the different applications, structure target, and delay of administration. Biocompatibilities with embedded cells and with the host tissue and biodegradation rate must be considerate. In this paper, we review the different applications of biomaterials combined with cell therapy in ischemic stroke and we explore specific features such as choice of biomaterial compounds and physical and mechanical properties concerning the recent studies in experimental stroke.
Collapse
|
13
|
Kuroda S. Current Opinion of Bone Marrow Stromal Cell Transplantation for Ischemic Stroke. Neurol Med Chir (Tokyo) 2016; 56:293-301. [PMID: 26984453 PMCID: PMC4908072 DOI: 10.2176/nmc.ra.2015-0349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article reviews recent advancement and perspective of bone marrow stromal cell (BMSC) transplantation for ischemic stroke, based on current information of basic and translational research. The author would like to emphasize that scientific approach would enable us to apply BMSC transplantation into clinical situation in near future.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama
| |
Collapse
|
14
|
Moisan A, Favre I, Rome C, De Fraipont F, Grillon E, Coquery N, Mathieu H, Mayan V, Naegele B, Hommel M, Richard MJ, Barbier EL, Remy C, Detante O. Intravenous Injection of Clinical Grade Human MSCs After Experimental Stroke: Functional Benefit and Microvascular Effect. Cell Transplant 2016; 25:2157-2171. [PMID: 26924704 DOI: 10.3727/096368916x691132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stroke is the leading cause of disability in adults. Many current clinical trials use intravenous (IV) administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs). This autologous graft requires a delay for ex vivo expansion of cells. We followed microvascular effects and mechanisms of action involved after an IV injection of human BM-MSCs (hBM-MSCs) at a subacute phase of stroke. Rats underwent a transient middle cerebral artery occlusion (MCAo) or a surgery without occlusion (sham) at day 0 (D0). At D8, rats received an IV injection of 3 million hBM-MSCs or PBS-glutamine. In a longitudinal behavioral follow-up, we showed delayed somatosensory and cognitive benefits 4 to 7 weeks after hBM-MSC injection. In a separate longitudinal in vivo magnetic resonance imaging (MRI) study, we observed an enhanced vascular density in the ischemic area 2 and 3 weeks after hBM-MSC injection. Histology and quantitative polymerase chain reaction (qPCR) revealed an overexpression of angiogenic factors such as Ang1 and transforming growth factor-1 (TGF-1) at D16 in hBM-MSC-treated MCAo rats compared to PBS-treated MCAo rats. Altogether, delayed IV injection of hBM-MSCs provides functional benefits and increases cerebral angiogenesis in the stroke lesion via a release of endogenous angiogenic factors enhancing the stabilization of newborn vessels. Enhanced angiogenesis could therefore be a means of improving functional recovery after stroke.
Collapse
|
15
|
Yin Y, Zhou X, Guan X, Liu Y, Jiang CB, Liu J. In vivo tracking of human adipose-derived stem cells labeled with ferumoxytol in rats with middle cerebral artery occlusion by magnetic resonance imaging. Neural Regen Res 2015. [PMID: 26199607 PMCID: PMC4498352 DOI: 10.4103/1673-5374.158355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ferumoxytol, an iron replacement product, is a new type of superparamagnetic iron oxide approved by the US Food and Drug Administration. Herein, we assessed the feasibility of tracking transplanted human adipose-derived stem cells labeled with ferumoxytol in middle cerebral artery occlusion-injured rats by 3.0 T MRI in vivo. 1 × 104 human adipose-derived stem cells labeled with ferumoxytol-heparin-protamine were transplanted into the brains of rats with middle cerebral artery occlusion. Neurologic impairment was scored at 1, 7, 14, and 28 days after transplantation. T2-weighted imaging and enhanced susceptibility-weighted angiography were used to observe transplanted cells. Results of imaging tests were compared with results of Prussian blue staining. The modified neurologic impairment scores were significantly lower in rats transplanted with cells at all time points except 1 day post-transplantation compared with rats without transplantation. Regions with hypointense signals on T2-weighted and enhanced susceptibility-weighted angiography images corresponded with areas stained by Prussian blue, suggesting the presence of superparamagnetic iron oxide particles within the engrafted cells. Enhanced susceptibility-weighted angiography image exhibited better sensitivity and contrast in tracing ferumoxytol-heparin-protamine-labeled human adipose-derived stem cells compared with T2-weighted imaging in routine MRI.
Collapse
Affiliation(s)
- Yan Yin
- Department of Neurology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiang Zhou
- Department of Neurology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Guan
- College of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Yang Liu
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Chang-Bin Jiang
- Department of Neurology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing Liu
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
16
|
Buyang Huanwu Decoction (BYHWD) Enhances Angiogenic Effect of Mesenchymal Stem Cell by Upregulating VEGF Expression After Focal Cerebral Ischemia. J Mol Neurosci 2015; 56:898-906. [PMID: 25796380 DOI: 10.1007/s12031-015-0539-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/04/2015] [Indexed: 12/28/2022]
Abstract
Buyang Huanwu decoction (BYHWD) has been used for centuries to treat paralysis and stroke. Previously, we have demonstrated that BYHWD combined with mesenchymal stem cell (MSC) transplantation attenuates ischemic injury partly by upregulating angiogenesis. However, the mechanisms of this drug for stroke treatment are not completely understood. Here, we aimed to clarify the mechanism of BYHWD on angiogenesis mediated by MSCs. Firstly, we verified microvessels with a size of 50-100 nm produced by either MSCs or MSCs treated by 500 μg/ml BYHWD. These exosomes were purified and found to be able to activate vascular endothelial growth factor (VEGF) expression in endothelial cells (ECs). Moreover, exosomes from MSCs and MSCs treated by BYHWD induced elevated microRNA (miRNA)-126 expression and reduced miR-221 and miR-222 expression. In MSCs, disruption of dicer, an enzyme responsible for miRNA maturation, by dicer small interfering RNA (siRNA), or RNase pretreatment abolished this ability of the exosomes. Additionally, exosomes from MSCs treated by BYHWD promoted VEGF and Ki-67 expression and augmented vascular density in rat brain after bilateral carotid artery ligation. In conclusion, our study revealed that BYHWD exposure augmented angiogenetic miRNA and VEGF expression in exosomes secreted by MSCs and elevated angiogenesis in rat brain.
Collapse
|
17
|
Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther 2015; 21:337-47. [PMID: 25676164 DOI: 10.1111/cns.12386] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell-based therapy for ischemic stroke has been widely explored in animal models and provides strong evidence of benefits. In this review, we summarize the types of stem cells, various delivery routes, and tracking tools for stem cell therapy of ischemic stroke. MSCs, EPCs, and NSCs are the most explored cell types for ischemic stroke treatment. Although the mechanisms of stem cell-based therapies are not fully understood, the most possible functions of the transplanted cells are releasing growth factors and regulating microenvironment through paracrine mechanism. Clinical application of stem cell-based therapy is still in its infancy. The next decade of stem cell research in stroke field needs to focus on combining different stem cells and different imaging modalities to fully explore the potential of this therapeutic avenue: from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Yao-Hui Tang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
18
|
Tan C, Shichinohe H, Abumiya T, Nakayama N, Kazumata K, Hokari M, Hamauchi S, Houkin K. Short-, middle- and long-term safety of superparamagnetic iron oxide-labeled allogeneic bone marrow stromal cell transplantation in rat model of lacunar infarction. Neuropathology 2014; 35:197-208. [PMID: 25376270 DOI: 10.1111/neup.12180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 02/06/2023]
Abstract
Recently, both basic and clinical studies demonstrated that bone marrow stromal cell (BMSC) transplantation therapy can promote functional recovery of patients with CNS disorders. A non-invasive method for cell tracking using MRI and superparamagnetic iron oxide (SPIO)-based labeling agents has been applied to elucidate the behavior of transplanted cells. However, the long-term safety of SPIO-labeled BMSCs still remains unclear. The aim of this study was to investigate the short-, middle- and long-term safety of the SPIO-labeled allogeneic BMSC transplantation. For this purpose, BMSCs were isolated from transgenic rats expressing green fluorescent protein (GFP) and were labeled with SPIO. The Na/K ATPase pump inhibitor ouabain or vehicle was stereotactically injected into the right striatum of wild-type rats to induce a lacunar lesion (n = 22). Seven days after the insult, either BMSCs or SPIO solution were stereotactically injected into the left striatum. A 7.0-Tesla MRI was performed to serially monitor the behavior of BMSCs in the host brain. The animals were sacrificed after 7 days (n = 7), 6 weeks (n = 6) or 10 months (n = 9) after the transplantation. MRI demonstrated that BMSCs migrated to the damage area through the corpus callosum. Histological analysis showed that activated microglia were present around the bolus of donor cells 7 days after the allogeneic cell transplantation, although an immunosuppressive drug was administered. The SPIO-labeled BMSCs resided and started to proliferate around the route of the cell transplantation. Within 6 weeks, large numbers of SPIO-labeled BMSCs reached the lacunar infarction area from the transplantation region through the corpus callosum. Some SPIO nanoparticles were phagocytized by microglia. After 10 months, the number of SPIO-positive cells was lower compared with the 7-day and 6-week groups. There was no tumorigenesis or severe injury observed in any of the animals. These findings suggest that BMSCs are safe after cell transplantation for the treatment of stroke.
Collapse
Affiliation(s)
- Chengbo Tan
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideo Shichinohe
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaaki Hokari
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shuji Hamauchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
19
|
Ikegame Y, Yamashita K, Nakashima S, Nomura Y, Yonezawa S, Asano Y, Shinoda J, Hara H, Iwama T. Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke? Front Cell Neurosci 2014; 8:322. [PMID: 25374506 PMCID: PMC4204523 DOI: 10.3389/fncel.2014.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are believed to be promising for cell administration therapy after ischemic stroke. Because of their advantageous characteristics, such as ability of differentiation into neurovascular lineages, avoidance of immunological problems, and abundance of graft cells in mesodermal tissues, studies regarding MSC therapy have increased recently. However, several controversies are yet to be resolved before a worldwide consensus regarding a standard protocol is obtained. In particular, the neuroprotective effects, the rate of cell migration to the lesion, and differentiation direction differ depending on preclinical observations. Analyses of these differences and application of recent developments in stem cell biology or engineering in imaging modality may contribute to identification of criteria for optimal stem cell therapy in which reliable protocols, which control cell quality and include safe administration procedures, are defined for each recovery phase after cerebral ischemia. In this mini review, we examine controversies regarding the fate of grafts and the prospects for advanced therapy that could be obtained through recent developments in stem cell research as direct conversion to neural cells.
Collapse
Affiliation(s)
- Yuka Ikegame
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Kentaro Yamashita
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Neurosurgery, Murakami Memorial Hospital, Asahi University Gifu, Japan
| | - Shigeru Nakashima
- Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Yuichi Nomura
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Shingo Yonezawa
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Yoshitaka Asano
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Jun Shinoda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan
| |
Collapse
|
20
|
Effect of Toxoplasma gondii infection on glucose metabolism in the brain of pregnant rats by [18F]FDG microPET imaging. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Platelet Lysate and Granulocyte-Colony Stimulating Factor Serve Safe and Accelerated Expansion of Human Bone Marrow Stromal Cells for Stroke Therapy. Transl Stroke Res 2014; 5:701-10. [DOI: 10.1007/s12975-014-0360-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/29/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022]
|
22
|
Ito M, Shichinohe H, Houkin K, Kuroda S. Application of cell sheet technology to bone marrow stromal cell transplantation for rat brain infarct. J Tissue Eng Regen Med 2014; 11:375-381. [DOI: 10.1002/term.1920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 02/26/2014] [Accepted: 04/24/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Masaki Ito
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Hideo Shichinohe
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Satoshi Kuroda
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| |
Collapse
|
23
|
Yang Z, Zhu L, Li F, Wang J, Wan H, Pan Y. Bone marrow stromal cells as a therapeutic treatment for ischemic stroke. Neurosci Bull 2014; 30:524-34. [PMID: 24817388 DOI: 10.1007/s12264-013-1431-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/12/2013] [Indexed: 12/15/2022] Open
Abstract
Cerebral ischemia remains the most frequent cause of death and quality-of-life impairments due to neurological deficits, and accounts for the majority of total healthcare costs. However, treatments for cerebral ischemia are limited. Over the last decade, bone marrow stromal cell (BMSC) therapy has emerged as a particularly appealing option, as it is possible to help patients even when initiated days or even weeks after the ischemic insult. BMSCs are a class of multipotent, self-renewing cells that give rise to differentiated progeny when implanted into appropriate tissues. Therapeutic effects of BMSC treatment for ischemic stroke, including sensory and motor recovery, have been reported in pre-clinical studies and clinical trials. In this article, we review the recent progress in BMSC-based therapy for ischemic stroke, focusing on the route of delivery and pre-processing of BMSCs. Selecting an optimal delivery route is of particular importance. The ideal approach, as well as the least risky, for translational applications still requires further identification. Appropriate preprocessing of BMSCs or combination therapy has the benefit of achieving the maximum possible restoration. Further pre-clinical studies are required to determine the time-window for transplantation and the appropriate dosage of cells.
Collapse
Affiliation(s)
- Zizhen Yang
- Department of Neurology, First Hospital and Clinical College, Harbin Medical University, Harbin, 150001, China
| | | | | | | | | | | |
Collapse
|
24
|
PET Demonstrates Functional Recovery after Treatment by Danhong Injection in a Rat Model of Cerebral Ischemic-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:430757. [PMID: 24707308 PMCID: PMC3953511 DOI: 10.1155/2014/430757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 01/07/2023]
Abstract
This study aimed to investigate neuroprotection of Danhong injection (DHI) in a rat model of cerebral ischemia using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). Method. Rats were divided into 5 groups: sham group, ischemia-reperfusion untreated (IRU) group, DHI-1 group (DHI 1 mL/kg/d), DHI-2 group (DHI 2 mL/kg/d), and DHI-4 group (DHI 4 mL/kg/d). AII the treated groups were intraperitoneally injected with DHI daily for 14 days. The therapeutic effects in terms of cerebral infarct volume, neurological function, and cerebral glucose metabolism were evaluated. Expression of TNF-α and IL-1β was detected with enzyme-linked immunosorbent assay (ELISA). Levels of mature neuronal marker (NeuN), glial marker (GFAP), vascular density factor (vWF), and glucose transporter 1 (GLUT1) were assessed by immunohistochemistry. Results. Compared with the IRU group, rats treated with DHI showed dose dependent reductions in cerebral infarct volume and levels of proinflammatory cytokines, improvement of neurological function, and recovery of cerebral glucose metabolism. Meanwhile, the significantly increased numbers of neurons, gliocytes, and vessels and the recovery of glucose utilization were found in the peri-infarct region after DHI treatment using immunohistochemical analysis. Conclusion. This study demonstrated the metabolic recovery after DHI treatment by micro-PET imaging with 18F-FDG and the neuroprotective effects of DHI in a rat model of cerebral ischemic-reperfusion injury.
Collapse
|
25
|
Byrnes KR, Wilson CM, Brabazon F, von Leden R, Jurgens JS, Oakes TR, Selwyn RG. FDG-PET imaging in mild traumatic brain injury: a critical review. FRONTIERS IN NEUROENERGETICS 2014; 5:13. [PMID: 24409143 PMCID: PMC3885820 DOI: 10.3389/fnene.2013.00013] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/23/2013] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs (mTBI) and patients not seeking medical attention is unknown. Currently, classification of mTBI or concussion is a clinical assessment since diagnostic imaging is typically inconclusive due to subtle, obscure, or absent changes in anatomical or physiological parameters measured using standard magnetic resonance (MR) or computed tomography (CT) imaging protocols. Molecular imaging techniques that examine functional processes within the brain, such as measurement of glucose uptake and metabolism using [18F]fluorodeoxyglucose and positron emission tomography (FDG-PET), have the ability to detect changes after mTBI. Recent technological improvements in the resolution of PET systems, the integration of PET with magnetic resonance imaging (MRI), and the availability of normal healthy human databases and commercial image analysis software contribute to the growing use of molecular imaging in basic science research and advances in clinical imaging. This review will discuss the technological considerations and limitations of FDG-PET, including differentiation between glucose uptake and glucose metabolism and the significance of these measurements. In addition, the current state of FDG-PET imaging in assessing mTBI in clinical and preclinical research will be considered. Finally, this review will provide insight into potential critical data elements and recommended standardization to improve the application of FDG-PET to mTBI research and clinical practice.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Anatomy, Physiology and Genetics, Uniformed Services University Bethesda, MD, USA ; Neuroscience Program, Department of Neuroscience, Uniformed Services University Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine Bethesda, MD, USA
| | - Colin M Wilson
- Center for Neuroscience and Regenerative Medicine Bethesda, MD, USA ; Department of Radiology and Radiological Sciences, Uniformed Services University Bethesda, MD, USA
| | - Fiona Brabazon
- Neuroscience Program, Department of Neuroscience, Uniformed Services University Bethesda, MD, USA
| | - Ramona von Leden
- Neuroscience Program, Department of Neuroscience, Uniformed Services University Bethesda, MD, USA
| | - Jennifer S Jurgens
- Nuclear Medicine Service, Walter Reed National Military Medical Center Bethesda, MD, USA ; Department of Neurology, Uniformed Services University Bethesda, MD, USA
| | | | - Reed G Selwyn
- Center for Neuroscience and Regenerative Medicine Bethesda, MD, USA ; Department of Radiology and Radiological Sciences, Uniformed Services University Bethesda, MD, USA
| |
Collapse
|
26
|
Zhao Y, Lai W, Xu Y, Li L, Chen Z, Wu W. Exogenous and endogenous therapeutic effects of combination Sodium Ferulate and bone marrow stromal cells (BMSCs) treatment enhance neurogenesis after rat focal cerebral ischemia. Metab Brain Dis 2013; 28:655-66. [PMID: 23955489 DOI: 10.1007/s11011-013-9425-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/22/2013] [Indexed: 01/16/2023]
Abstract
Combining bone marrow stromal cells (BMSCs) with pharmacological therapy is an attractive approach for neurological function recovery of stroke. Our previous reports demonstrated that Sodium Ferulate (SF) combined with BMSCs administration could facilitate BMSCs migration into the ischemic brain by up-regulation of stromal cell-derived factor-1 alpha (SDF-1α)/chemokine (CXC motif) receptor-4 axis after stroke. To further investigate whether combination treatment could enhance neurogenesis through exogenous and endogenous therapeutic effects, we established rat permanent middle cerebral artery occlusion (pMCAo) model and measured ischemic infarct size by magnetic resonance imaging (MRI) scanning in the present study. The results showed that combination treatment could dramatically reduce ischemic infarction size which may be attributed to the effects on decreasing brain edema and enhancing cerebral tissue perfusion at 3 days after stroke. Immunofluorescence staining results indicated that combination treatment could not only promote expression of Glucose transporter 1(Glut1) and Neuron-specific class III beta-tubulin (Tuj1) in the periinfarct area, but also improve BMSCs expression of Glut1, GFAP and Tuj1. Moreover, it showed combination treatment could enhance the endogenous expression of Tuj-1 in ischemic boundary zone. These results perhaps associated with combination treatment up-regulating bone morphogenetic proteins (BMP)2/4 expressions and down-regulating Notch-1, Hes1 and Hes5 expressions as detected by Western Blot analysis. Our study firstly demonstrated in vivo that combination treatment could facilitate exogenous BMSCs differentiation into neural-and astrocytic-like cells, as well as enhance repair capacity of brain parenchymal cells by promoting glucose metabolism and endogenous neurogenesis after stroke. These results illustrate that administration of SF and BMSCs is a potential pathway of cell-based pharmacological treatment towards ischemic stroke.
Collapse
Affiliation(s)
- Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao,
| | | | | | | | | | | |
Collapse
|
27
|
Multimodality molecular imaging of stem cells therapy for stroke. BIOMED RESEARCH INTERNATIONAL 2013; 2013:849819. [PMID: 24222920 PMCID: PMC3816035 DOI: 10.1155/2013/849819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/21/2013] [Indexed: 12/03/2022]
Abstract
Stem cells have been proposed as a promising therapy for treating stroke. While several studies have demonstrated the therapeutic benefits of stem cells, the exact mechanism remains elusive. Molecular imaging provides the possibility of the visual representation of biological processes at the cellular and molecular level. In order to facilitate research efforts to understand the stem cells therapeutic mechanisms, we need to further develop means of monitoring these cells noninvasively, longitudinally and repeatedly. Because of tissue depth and the blood-brain barrier (BBB), in vivo imaging of stem cells therapy for stroke has unique challenges. In this review, we describe existing methods of tracking transplanted stem cells in vivo, including magnetic resonance imaging (MRI), nuclear medicine imaging, and optical imaging (OI). Each of the imaging techniques has advantages and drawbacks. Finally, we describe multimodality imaging strategies as a more comprehensive and potential method to monitor transplanted stem cells for stroke.
Collapse
|
28
|
Saito H, Magota K, Zhao S, Kubo N, Kuge Y, Shichinohe H, Houkin K, Tamaki N, Kuroda S. 123
I-Iomazenil Single Photon Emission Computed Tomography Visualizes Recovery of Neuronal Integrity by Bone Marrow Stromal Cell Therapy in Rat Infarct Brain. Stroke 2013; 44:2869-74. [DOI: 10.1161/strokeaha.113.001612] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background and Purpose—
This study was aimed to assess whether
123
I-iomazenil (IMZ) single photon emission computed tomography can serially monitor the effects of bone marrow stromal cell (BMSC) transplantation on neuronal integrity in infarct brain of rats.
Methods—
The BMSCs were harvested from green fluorescent protein–transgenic rats and were cultured. The rats were subjected to permanent middle cerebral artery occlusion. Their motor function was serially quantified throughout the experiments. The BMSCs or vehicle was stereotactically transplanted into the ipsilateral striatum at 7 days after the insult. Using small-animal single photon emission computed tomography/computed tomography apparatus, the
123
I-IMZ uptake was serially measured at 6 and 35 days after the insult. Finally, fluorescence immunohistochemistry was performed to evaluate the distribution of engrafted cells and their phenotypes.
Results—
The distribution of
123
I-IMZ was markedly decreased in the ipsilateral neocortex at 6 days postischemia. The vehicle-transplanted animals did not show a significant change at 35 days postischemia. However, BMSC transplantation significantly improved the distribution of
123
I-IMZ in the peri-infarct neocortex as well as motor function. The engrafted BMSCs were densely distributed around cerebral infarct, and some of them expressed neuronal nuclear antigen and γ-aminobutyric acid type-A receptor.
Conclusions—
The present findings strongly suggest that the BMSCs may enhance functional recovery by improving the neuronal integrity in the peri-infarct area, when directly transplanted into the infarct brain at clinically relevant timing.
123
I-IMZ single photon emission computed tomography may be a promising modality to scientifically prove the beneficial effects of BMSC transplantation on the host brain in clinical situation.
Collapse
Affiliation(s)
- Hisayasu Saito
- From the Departments of Neurosurgery (H. Saito, H. Shichinohe, K.H., S.K.), Nuclear Medicine (K.M., N.T.), and Tracer Kinetics and Bioanalysis (S.Z.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan (N.K., Y.K.); and Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (S.K.)
| | - Keiichi Magota
- From the Departments of Neurosurgery (H. Saito, H. Shichinohe, K.H., S.K.), Nuclear Medicine (K.M., N.T.), and Tracer Kinetics and Bioanalysis (S.Z.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan (N.K., Y.K.); and Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (S.K.)
| | - Songji Zhao
- From the Departments of Neurosurgery (H. Saito, H. Shichinohe, K.H., S.K.), Nuclear Medicine (K.M., N.T.), and Tracer Kinetics and Bioanalysis (S.Z.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan (N.K., Y.K.); and Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (S.K.)
| | - Naoki Kubo
- From the Departments of Neurosurgery (H. Saito, H. Shichinohe, K.H., S.K.), Nuclear Medicine (K.M., N.T.), and Tracer Kinetics and Bioanalysis (S.Z.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan (N.K., Y.K.); and Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (S.K.)
| | - Yuji Kuge
- From the Departments of Neurosurgery (H. Saito, H. Shichinohe, K.H., S.K.), Nuclear Medicine (K.M., N.T.), and Tracer Kinetics and Bioanalysis (S.Z.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan (N.K., Y.K.); and Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (S.K.)
| | - Hideo Shichinohe
- From the Departments of Neurosurgery (H. Saito, H. Shichinohe, K.H., S.K.), Nuclear Medicine (K.M., N.T.), and Tracer Kinetics and Bioanalysis (S.Z.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan (N.K., Y.K.); and Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (S.K.)
| | - Kiyohiro Houkin
- From the Departments of Neurosurgery (H. Saito, H. Shichinohe, K.H., S.K.), Nuclear Medicine (K.M., N.T.), and Tracer Kinetics and Bioanalysis (S.Z.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan (N.K., Y.K.); and Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (S.K.)
| | - Nagara Tamaki
- From the Departments of Neurosurgery (H. Saito, H. Shichinohe, K.H., S.K.), Nuclear Medicine (K.M., N.T.), and Tracer Kinetics and Bioanalysis (S.Z.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan (N.K., Y.K.); and Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (S.K.)
| | - Satoshi Kuroda
- From the Departments of Neurosurgery (H. Saito, H. Shichinohe, K.H., S.K.), Nuclear Medicine (K.M., N.T.), and Tracer Kinetics and Bioanalysis (S.Z.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan (N.K., Y.K.); and Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (S.K.)
| |
Collapse
|
29
|
Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model. PLoS One 2013; 8:e60049. [PMID: 23555879 PMCID: PMC3612030 DOI: 10.1371/journal.pone.0060049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/20/2013] [Indexed: 01/18/2023] Open
Abstract
In this study, rat bone marrow stromal stem cells (BMSCs) were tracked after IV administration to rats with experimental stroke caused by middle cerebral artery occlusion (MCAO). In addition, the effects of BMSC treatment on blood cell composition, brain glia and sensorimotor behavior was studied and compared to that which occurred spontaneously during the normal recovery process after stroke. We found that the vast majority of radiolabeled or fluorescently labeled BMSCs traveled to and remained in peripheral organs (lungs, spleen, liver) 3 days after IV injection in the MCAO rat. Once in the circulation, BMSCs also produced rapid alterations in host blood cell composition, increasing both neutrophil and total white blood cell count by 6 hours post-injection. In contrast, few injected BMSCs traveled to the brain and almost none endured there long term. Nonetheless, BMSC treatment produced dramatic changes in the number and activation of brain astroglia and microglia, particularly in the region of the infarct. These cellular changes were correlated with a marked improvement in performance on tests of sensory and motor function as compared to the partial recovery of function seen in PBS-injected control rats. We conclude that the notable recovery in function observed after systemic administration of BMSCs to MCAO rats is likely due to the cellular changes in blood and/or brain cell number, activation state and their cytokine/growth factor products.
Collapse
|