1
|
Furuya G, Katoh H, Atsumi S, Hashimoto I, Komura D, Hatanaka R, Senga S, Hayashi S, Akita S, Matsumura H, Miura A, Mita H, Nakakido M, Nagatoishi S, Sugiyama A, Suzuki R, Konishi H, Yamamoto A, Abe H, Hiraoka N, Aoki K, Kato Y, Seto Y, Yoshimura C, Miyadera K, Tsumoto K, Ushiku T, Ishikawa S. Nucleic acid-triggered tumoral immunity propagates pH-selective therapeutic antibodies through tumor-driven epitope spreading. Cancer Sci 2022; 114:321-338. [PMID: 36136061 PMCID: PMC9807517 DOI: 10.1111/cas.15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023] Open
Abstract
Important roles of humoral tumor immunity are often pointed out; however, precise profiles of dominant antigens and developmental mechanisms remain elusive. We systematically investigated the humoral antigens of dominant intratumor immunoglobulin clones found in human cancers. We found that approximately half of the corresponding antigens were restricted to strongly and densely negatively charged polymers, resulting in simultaneous reactivities of the antibodies to both densely sulfated glycosaminoglycans (dsGAGs) and nucleic acids (NAs). These anti-dsGAG/NA antibodies matured and expanded via intratumoral immunological driving force of innate immunity via NAs. These human cancer-derived antibodies exhibited acidic pH-selective affinity across both antigens and showed specific reactivity to diverse spectrums of human tumor cells. The antibody-drug conjugate exerted therapeutic effects against multiple cancers in vivo by targeting cell surface dsGAG antigens. This study reveals that intratumoral immunological reactions propagate tumor-oriented immunoglobulin clones and demonstrates a new therapeutic modality for the universal treatment of human malignancies.
Collapse
Affiliation(s)
- Genta Furuya
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroto Katoh
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shinichiro Atsumi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Itaru Hashimoto
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Komura
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ryo Hatanaka
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Shogo Senga
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Shuto Hayashi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shoji Akita
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Hirofumi Matsumura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Akihiro Miura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Hideaki Mita
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Satoru Nagatoishi
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Akira Sugiyama
- Laboratory of Systems Biology and MedicineResearch Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Ryohei Suzuki
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroki Konishi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Asami Yamamoto
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Nobuyoshi Hiraoka
- Department of Analytical PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Kazunori Aoki
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Yasumasa Kato
- Department of Oral Function and Molecular BiologyOhu University School of DentistryFukushimaJapan
| | - Yasuyuki Seto
- Department of Gastrointestinal SurgeryGraduate School of Medicine, The University of TokyoTokyoJapan
| | - Chihoko Yoshimura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Kazutaka Miyadera
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Kouhei Tsumoto
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shumpei Ishikawa
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Atypical chemokine receptor ACKR3/CXCR7 controls postnatal vasculogenesis and arterial specification by mesenchymal stem cells via Notch signaling. Cell Death Dis 2020; 11:307. [PMID: 32366833 PMCID: PMC7198625 DOI: 10.1038/s41419-020-2512-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are known to play a role in postnatal vasculogenesis and hold great promise for vascular regeneration. However, the mechanisms by which the endothelial differentiation and specification of MSCs remain unclear. We examined the potential role and molecular mechanisms of atypical chemokine receptor ACKR3/CXCR7 in MSC-mediated endothelial cell differentiation and specification. Here, we showed that vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) activate CXCR7 expression on MSCs through PDGF receptors, PDGFRα and PDGFRβ-mediated phosphoinositide 3-kinase (PI3K)/Akt signaling. Genetic and pharmacologic blockage of CXCR7 on MSCs suppressed the VEGF or stromal cell-derived factor 1 (SDF)-1-induced the capacity for vasculogenesis in vitro and in vivo. Moreover, CXCR7 gain of function markedly promoted vasculogenesis by MSCs in vitro and in vivo and induced endothelial differentiation along the arterial endothelial cell lineage via upregulation of Notch signaling. However, blockade of Notch signaling inhibited CXCR7-induced vasculogensis by MSCs. These results indicate CXCR7 is a critical regulator of MSC-mediated postnatal vasculogenesis and arterial specification via Notch signaling.
Collapse
|
3
|
Ito JT, Lourenço JD, Righetti RF, Tibério IFLC, Prado CM, Lopes FDTQS. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells 2019; 8:E342. [PMID: 30979017 PMCID: PMC6523091 DOI: 10.3390/cells8040342] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
Changes in extracellular matrix (ECM) components in the lungs are associated with the progression of respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Experimental and clinical studies have revealed that structural changes in ECM components occur under chronic inflammatory conditions, and these changes are associated with impaired lung function. In bronchial asthma, elastic and collagen fiber remodeling, mostly in the airway walls, is associated with an increase in mucus secretion, leading to airway hyperreactivity. In COPD, changes in collagen subtypes I and III and elastin, interfere with the mechanical properties of the lungs, and are believed to play a pivotal role in decreased lung elasticity, during emphysema progression. In ARDS, interstitial edema is often accompanied by excessive deposition of fibronectin and collagen subtypes I and III, which can lead to respiratory failure in the intensive care unit. This review uses experimental models and human studies to describe how inflammatory conditions and ECM remodeling contribute to the loss of lung function in these respiratory diseases.
Collapse
Affiliation(s)
- Juliana T Ito
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Juliana D Lourenço
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Renato F Righetti
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
- Rehabilitation service, Sírio-Libanês Hospital, Sao Paulo 01308-050, Brazil.
| | - Iolanda F L C Tibério
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Carla M Prado
- Department of Bioscience, Laboratory of Studies in Pulmonary Inflammation, Federal University of Sao Paulo, Santos 11015-020, Brazil.
| | - Fernanda D T Q S Lopes
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| |
Collapse
|
4
|
Fu LS, Wu YR, Fang SL, Tsai JJ, Lin HK, Chen YJ, Chen TY, Chang MDT. Cell Penetrating Peptide Derived from Human Eosinophil Cationic Protein Decreases Airway Allergic Inflammation. Sci Rep 2017; 7:12352. [PMID: 28955044 PMCID: PMC5617860 DOI: 10.1038/s41598-017-12390-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/07/2017] [Indexed: 01/15/2023] Open
Abstract
Cell penetrating peptide derived from human eosinophil cationic protein (CPPecp) is a 10-amino-acid peptide containing a core heparan sulfate (HS)-binding motif of human eosinophil cationic protein (ECP). It binds and penetrates bronchial epithelial cells without cytotoxic effects. Here we investigated airway-protective effects of CPPecp in BEAS-2B cell line and mite-induced airway allergic inflammation in BALB/c mice. In BEAS-2B cell, CPPecp decreases ECP-induced eotaxin mRNA expression. CPPecp also decreases eotaxin secretion and p-STAT6 activation induced by ECP, as well as by IL-4. In vivo studies showed CPPecp decreased mite-induced airway inflammation in terms of eosinophil and neutrophil count in broncho-alveolar lavage fluid, peri-bronchiolar and alveolar pathology scores, cytokine production in lung protein extract including interleukin (IL)-5, IL-13, IL-17A/F, eotaxin; and pause enhancement from methacholine stimulation. CPPecp treated groups also showed lower serum mite-specific IgE level. In this study, we have demonstrated the in vitro and in vivo anti-asthma effects of CPPecp.
Collapse
Affiliation(s)
- Lin-Shien Fu
- Pediatric Department, Taichung Veterans General Hospital, Taichung, Taiwan.
- Pediatrics Department, National Yang-Ming Medical University, Taipei, Taiwan.
| | - Yu-Rou Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shun-Lung Fang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jaw-Ji Tsai
- Medical Research Department, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Heng-Kuei Lin
- Pediatric Department, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yee-Jun Chen
- Pediatric Department, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ting-Yu Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Pomin VH. Sulfated glycans in inflammation. Eur J Med Chem 2015; 92:353-69. [PMID: 25576741 DOI: 10.1016/j.ejmech.2015.01.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 12/18/2022]
Abstract
Sulfated glycans such as glycosaminoglycans on proteoglycans are key players in both molecular and cellular events of inflammation. They participate in leukocyte rolling along the endothelial surface of inflamed sites; chemokine regulation and its consequential functions in leukocyte guidance, migration and activation; leukocyte transendothelial migration; and structural assembly of the subendothelial basement membrane responsible to control tissue entry of cells. Due to these and other functions, exogenous sulfated glycans of various structures and origins can be used to interventionally down-regulate inflammation processes. In this review article, discussion is given primarily on the anti-inflammatory functions of mammalian heparins, heparan sulfate, chondroitin sulfate, dermatan sulfate and related compounds as well as the holothurian fucosylated chondroitin sulfate and the brown algal fucoidans. Understanding the underlying mechanisms of action of these sulfated glycans in inflammation, helps research programs involved in developing new carbohydrate-based drugs aimed to combat acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| |
Collapse
|