1
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Liver Radioembolization: An Analysis of Parameters that Influence the Catheter-Based Particle-Delivery via CFD. Curr Med Chem 2020; 27:1600-1615. [DOI: 10.2174/0929867325666180622145647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
Abstract
Radioembolization (RE) is a valuable treatment for liver cancer. It consists of administering
radioactive microspheres by an intra-arterially placed catheter with the aim of
lodging these microspheres, which are driven by the bloodstream, in the tumoral bed. Even
though it is a safe treatment, some radiation-induced complications may arise. In trying to
detect or solve the possible incidences that cause nontarget irradiation, simulating the particle-
hemodynamics in hepatic arteries during RE by computational fluid dynamics (CFD)
tools has become a valuable approach. This paper reviews the parameters that influence the
outcome of RE and that have been studied via numerical simulations. In this numerical approach,
the outcome of RE is regarded as successful if particles reach the artery branches that
feed tumor-bearing liver segments. Up to 10 parameters have been reviewed. The variation
of each parameter actually alters the hemodynamic pattern in the vicinities of the catheter tip
and locally alters the incorporation of the particles into the bloodstream. Therefore, in general,
the local influences of these parameters should result in global differences in terms of
particle distribution in the hepatic artery branches. However, it has been observed that under
some (qualitatively described) appropriate conditions where particles align with blood
streamlines, the local influence resulting from a variation of a given parameter vanishes and
no global differences are observed. Furthermore, the increasing number of CFD studies on
RE suggests that numerical simulations have become an invaluable research tool in the study
of RE.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Alejandro Rivas
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Juan C. Ramos
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigacion Sanitaria de Navarra, 31008 Pamplona, Spain
| | - José I. Bilbao
- IdiSNA, Instituto de Investigacion Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
2
|
A guide to 90Y radioembolization and its dosimetry. Phys Med 2019; 68:132-145. [DOI: 10.1016/j.ejmp.2019.09.236] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023] Open
|
3
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Computational particle-haemodynamics analysis of liver radioembolization pretreatment as an actual treatment surrogate. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e02791. [PMID: 27038438 DOI: 10.1002/cnm.2791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Liver radioembolization (RE) is a treatment option for patients with unresectable and chemorefractory primary and metastatic liver tumours. RE consists of intra-arterially administering via catheter radioactive microspheres that locally attack the tumours, sparing healthy tissue. Prior to RE, the standard practice is to conduct a treatment-mimicking pretreatment assessment via the infusion of 99m Tc-labelled macroaggregated albumin microparticles. The usefulness of this pretreatment has been debated in the literature, and thus, the aim of the present study is to shed light on this issue by numerically simulating the liver RE pretreatment and actual treatment particle-haemodynamics in a patient-specific hepatic artery under two different literature-based cancer scenarios and two different placements of a realistic end-hole microcatheter in the proper hepatic artery. The parameters that are analysed are the following: microagent quantity and size (accounting for RE pretreatment and treatment), catheter-tip position (near the proper hepatic artery bifurcation and away from it), and cancer burden (10% and 30% liver involvement). The conclusion that can be reached from the simulations is that when it comes to mimicking RE in terms of delivering particles to tumour-bearing segments, the catheter-tip position is much more important (because of the importance of local haemodynamic pattern alteration) than the infused microagents (i.e. quantity and size). Cancer burden is another important feature because the increase in blood flow rate to tumour-bearing segments increases the power to drag particles. These numerical simulation-based conclusions are in agreement with clinically observed events reported in the literature. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jorge Aramburu
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Raúl Antón
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pío XII 36, 31008, Pamplona, Spain
| | - Alejandro Rivas
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Juan Carlos Ramos
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pío XII 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Av. Pío XII 36, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pío XII 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain
| |
Collapse
|
4
|
O' Doherty J. A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy. ACTA ACUST UNITED AC 2015; 2:1-34. [PMID: 27182449 DOI: 10.17229/jdit.2015-0428-016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Yttrium-90 radioembolization (90Y-RE) is a well-established therapy for the treatment of hepatocellular carcinoma (HCC) and also of metastatic liver deposits from other malignancies. Nuclear Medicine and Cath Lab diagnostic imaging takes a pivotal role in the success of the treatment, and in order to fully exploit the efficacy of the technique and provide reliable quantitative dosimetry that are related to clinical endpoints in the era of personalized medicine, technical challenges in imaging need to be overcome. In this paper, the extensive literature of current 90Y-RE techniques and challenges facing it in terms of quantification and dosimetry are reviewed, with a focus on the current generation of 3D dosimetry techniques. Finally, new emerging techniques are reviewed which seek to overcome these challenges, such as high-resolution imaging, novel surgical procedures and the use of other radiopharmaceuticals for therapy and pre-therapeutic planning.
Collapse
Affiliation(s)
- Jim O' Doherty
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
5
|
Bernardini M, Smadja C, Faraggi M, Orio S, Petitguillaume A, Desbrée A, Ghazzar N. Liver Selective Internal Radiation Therapy with 90Y resin microspheres: Comparison between pre-treatment activity calculation methods. Phys Med 2014; 30:752-64. [DOI: 10.1016/j.ejmp.2014.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022] Open
|