1
|
Veit-Haibach P, Ahlström H, Boellaard R, Delgado Bolton RC, Hesse S, Hope T, Huellner MW, Iagaru A, Johnson GB, Kjaer A, Law I, Metser U, Quick HH, Sattler B, Umutlu L, Zaharchuk G, Herrmann K. International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology. Eur J Nucl Med Mol Imaging 2023; 50:3513-3537. [PMID: 37624384 PMCID: PMC10547645 DOI: 10.1007/s00259-023-06406-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PREAMBLE The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging. The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized. These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Patrick Veit-Haibach
- Joint Department Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Toronto General Hospital, 1 PMB-275, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, 431 53, Mölndal, Sweden
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Geoffrey B Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen, Denmark
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Greg Zaharchuk
- Division of Neuroradiology, Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| |
Collapse
|
2
|
Feng P, Shao Z, Dong B, Fang T, Huang Z, Li Z, Fu F, Wu Y, Wei W, Yuan J, Yang Y, Wang Z, Wang M. Application of diffusion kurtosis imaging and 18F-FDG PET in evaluating the subtype, stage and proliferation status of non-small cell lung cancer. Front Oncol 2022; 12:989131. [PMID: 36248958 PMCID: PMC9562703 DOI: 10.3389/fonc.2022.989131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Lung cancer has become one of the deadliest tumors in the world. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for approximately 80%-85% of all lung cancer cases. This study aimed to investigate the value of diffusion kurtosis imaging (DKI), diffusion-weighted imaging (DWI) and 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) in differentiating squamous cell carcinoma (SCC) and adenocarcinoma (AC) and to evaluate the correlation of each parameter with stage and proliferative status Ki-67. Methods Seventy-seven patients with lung lesions were prospectively scanned by hybrid 3.0-T chest 18F-FDG PET/MR. Mean kurtosis (MK), mean diffusivity (MD), apparent diffusion coefficient (ADC), maximum standard uptake value (SUVmax), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were measured. The independent samples t test or Mann–Whitney U test was used to compare and analyze the differences in each parameter of SCC and AC. The diagnostic efficacy was evaluated by receiver operating characteristic (ROC) curve analysis and compared with the DeLong test. A logistic regression analysis was used for the evaluation of independent predictors. Bootstrapping (1000 samples) was performed to establish a control model, and calibration curves and ROC curves were used to validate its performance. Pearson’s correlation coefficient and Spearman’s correlation coefficient were calculated for correlation analysis. Results The MK and ADC values of the AC group were significantly higher than those of the SCC group (all P< 0.05), and the SUVmax, MTV, and TLG values of the SCC group were significantly higher than those of the AC group (all P<0.05). There was no significant difference in the MD value between the two groups. Moreover, MK, SUVmax, TLG and MTV were independent predictors of the NSCLC subtype, and the combination of these parameters had an optimal diagnostic efficacy (AUC, 0.876; sensitivity, 86.27%; specificity, 80.77%), which was significantly better than that of MK (AUC = 0.758, z = 2.554, P = 0.011), ADC (AUC = 0.679, z = 2.322, P = 0.020), SUVmax (AUC = 0.740, z = 2.584, P = 0.010), MTV (AUC = 0.715, z = 2.530, P = 0.011) or TLG (AUC = 0.716, z = 2.799, P = 0.005). The ROC curve showed that the validation model had high accuracy in identifying AC and SCC (AUC, 0.844; 95% CI, 0.785-0.885);. The SUVmax value was weakly positively correlated with the Ki-67 index (r = 0.340, P< 0.05), the ADC and MD values were weakly negatively correlated with the Ki-67 index (r = -0.256, -0.282, P< 0.05), and the MTV and TLG values were weakly positively correlated with NSCLC stage (r = 0.342, 0.337, P< 0.05). Conclusion DKI, DWI and 18F-FDG PET are all effective methods for assessing the NSCLC subtype, and some parameters are correlated with stage and proliferation status.
Collapse
Affiliation(s)
- Pengyang Feng
- Department of Medical Imaging, Henan University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zehua Shao
- Heart Center of Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bai Dong
- Department of Orthopaedics, Henan University People’s Hospital, Zhengzhou, China
| | - Ting Fang
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhun Huang
- Department of Medical Imaging, Henan University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ziqiang Li
- Department of Medical Imaging, Xinxiang Medical University Henan Provincial People’s Hospital, Zhengzhou, China
| | - Fangfang Fu
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, United Imaging Healthcare Group, Beijing, China
| | - Zhe Wang
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Medical Imaging, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Meiyun Wang,
| |
Collapse
|
3
|
Bogdanovic B, Solari EL, Villagran Asiares A, McIntosh L, van Marwick S, Schachoff S, Nekolla SG. PET/MR Technology: Advancement and Challenges. Semin Nucl Med 2021; 52:340-355. [PMID: 34969520 DOI: 10.1053/j.semnuclmed.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
When this article was written, it coincided with the 11th anniversary of the installation of our PET/MR device in Munich. In fact, this was the first fully integrated device to be in clinical use. During this time, we have observed many interesting behaviors, to put it kindly. However, it is more critical that in this process, our understanding of the system also improved - including the advantages and limitations from a technical, logistical, and medical perspective. The last decade of PET/MRI research has certainly been characterized by most sites looking for a "key application." There were many ideas in this context and before and after the devices became available, some of which were based on the earlier work with integrating data from single devices. These involved validating classical PET methods with MRI (eg, perfusion or oncology diagnostics). More important, however, were the scenarios where intermodal synergies could be expected. In this review, we look back on this decade-long journey, at the challenges overcome and those still to come.
Collapse
Affiliation(s)
- Borjana Bogdanovic
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Esteban Lucas Solari
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alberto Villagran Asiares
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sandra van Marwick
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sylvia Schachoff
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
4
|
Pyatigorskaya N, De Laroche R, Bera G, Giron A, Bertolus C, Herve G, Chambenois E, Bergeret S, Dormont D, Amor-Sahli M, Kas A. Are Gadolinium-Enhanced MR Sequences Needed in Simultaneous 18F-FDG-PET/MRI for Tumor Delineation in Head and Neck Cancer? AJNR Am J Neuroradiol 2020; 41:1888-1896. [PMID: 32972956 DOI: 10.3174/ajnr.a6764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 06/21/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE PET/MRI with 18F-FDG has demonstrated the advantages of simultaneous PET and MR imaging in head and neck cancer imaging, MRI allowing excellent soft-tissue contrast, while PET provides metabolic information. The aim of this study was to evaluate the added value of gadolinium contrast-enhanced sequences in the tumor delineation of head and neck cancers on 18F-FDG-PET/MR imaging. MATERIALS AND METHODS Consecutive patients who underwent simultaneous head and neck 18F-FDG-PET/MR imaging staging or restaging followed by surgery were retrospectively included. Local tumor invasion and lymph node extension were assessed in 45 head and neck anatomic regions using 18F-FDG-PET/MR imaging by 2 rater groups (each one including a radiologist and a nuclear medicine physician). Two reading sessions were performed, one without contrast-enhanced sequences (using only T1WI, T2WI, and PET images) and a second with additional T1WI postcontrast sequences. The results were compared with the detailed histopathologic analysis, used as reference standard. The κ concordance coefficient between the reading sessions and sensitivity and specificity for each region were calculated. RESULTS Thirty patients were included. There was excellent agreement between the contrast-free and postgadolinium reading sessions in delineating precise tumor extension in the 45 anatomic regions studied (Cohen κ = 0.96, 95% CI = [0.94-0.97], P < .001). The diagnostic accuracy did not differ between contrast-free and postgadolinium reading sessions, being 0.97 for both groups and both reading sessions. For the 2 rater groups, there was good sensitivity for both contrast-free (0.83 and 0.85) and postgadolinium reading sessions (0.88 and 0.90, respectively). Moreover, there was excellent specificity (0.98) for both groups and reading sessions. CONCLUSIONS Gadolinium chelate contrast administration showed no added value for accurate characterization of head and neck primary tumor extension and could possibly be avoided in the PET/MR imaging head and neck workflow.
Collapse
Affiliation(s)
- N Pyatigorskaya
- From Assistance Publique Hôpitaux de Paris Neuroradiology Department (N.P., E.C., D.D., M.A.-S.)
- Sorbonne University (N.P., D.D.), Pierre and Marie Faculty of Medicine, Paris, France
| | - R De Laroche
- Nuclear Medicine Department (R.D.L.), Morvan Hospital, Brest, France
| | - G Bera
- Nuclear Medicine Department (G.B., S.B., A.K.), Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - A Giron
- Sorbonne University (A.G., A.K.), Laboratoire d'Imagerie Biomédicale, Paris, France
| | - C Bertolus
- Sorbonne University, Maxillo-Facial Surgery Department (C.B.)
- CIMI Sorbonne University UPMC (C.B.), Paris, France
| | - G Herve
- Pathology Department (G.H.), Pitié Salpêtrière-Charles Foix Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - E Chambenois
- From Assistance Publique Hôpitaux de Paris Neuroradiology Department (N.P., E.C., D.D., M.A.-S.)
| | - S Bergeret
- Nuclear Medicine Department (G.B., S.B., A.K.), Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - D Dormont
- From Assistance Publique Hôpitaux de Paris Neuroradiology Department (N.P., E.C., D.D., M.A.-S.)
- Sorbonne University (N.P., D.D.), Pierre and Marie Faculty of Medicine, Paris, France
| | - M Amor-Sahli
- From Assistance Publique Hôpitaux de Paris Neuroradiology Department (N.P., E.C., D.D., M.A.-S.)
| | - A Kas
- Nuclear Medicine Department (G.B., S.B., A.K.), Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Sorbonne University (A.G., A.K.), Laboratoire d'Imagerie Biomédicale, Paris, France
| |
Collapse
|
5
|
Meerwein CM, Maurer A, Stolzmann P, Stadler TM, Soyka MB, Holzmann D, Hüllner MW. Hybrid positron emission tomography imaging for initial staging of sinonasal tumors: Total lesion glycolysis as prognosticator of treatment response. Head Neck 2020; 43:238-246. [PMID: 32946188 DOI: 10.1002/hed.26476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/02/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND To assess hybrid positron emission tomography (PET) imaging in the initial staging and outcome prediction of sinonasal malignancies. METHODS Retrospective study on patients with sinonasal malignancies undergoing hybrid PET imaging for initial staging. RESULTS Complete remission (CR) was achieved in 45 of 65 patients (69.2%). Overall sensitivity for detection of primaries using 18F-fluoro-deoxy-d-glucose PET (FDG-PET) was 95.4%, for lymph node metastases 100% and distant metastases (DM) 100%. On univariate analysis, PET parameter total lesion glycolysis (TLG) was associated with achieving CR after primary treatment (176.8 ± 157.2 vs 83.7 ± 110.8, P = .03). Multivariate logistic regression demonstrated that TLG adjusted for the T classification best predicted achievement of CR. CONCLUSIONS Hybrid PET imaging yields an excellent sensitivity in detecting primary tumors, lymph node metastases and DM in sinonasal malignancies. TLG of the primary tumor is an independent prognostic factor for achieving CR after initial treatment.
Collapse
Affiliation(s)
- Christian M Meerwein
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Alexander Maurer
- University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Paul Stolzmann
- University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Thomas M Stadler
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Michael B Soyka
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - David Holzmann
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Martin W Hüllner
- University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Hybrid PET- MRI is a technique that has the ability to improve diagnostic accuracy in many applications, whereas PET and MRI performed separately often fail to provide accurate responses to clinical questions. Here, we review recent studies and current developments in PET-MRI, focusing on clinical applications. RECENT FINDINGS The combination of PET and MRI imaging methods aims at increasing the potential of each individual modality. Combined methods of image reconstruction and correction of PET-MRI attenuation are being developed, and a number of applications are being introduced into clinical practice. To date, the value of PET-MRI has been demonstrated for the evaluation of brain tumours in epilepsy and neurodegenerative diseases. Continued advances in data analysis regularly improve the efficiency and the potential application of multimodal biomarkers. SUMMARY PET-MRI provides simultaneous of anatomical, functional, biochemical and metabolic information for the personalized characterization and monitoring of neurological diseases. In this review, we show the advantage of the complementarity of different biomarkers obtained using PET-MRI data. We also present the recent advances made in this hybrid imaging modality and its advantages in clinical practice compared with MRI and PET separately.
Collapse
|
7
|
Performing clinical 18F-FDG-PET/MRI of the mediastinum optimising a dedicated, patient-friendly protocol. Nucl Med Commun 2019; 40:815-826. [PMID: 31169592 DOI: 10.1097/mnm.0000000000001035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To construct a mediastinal-specific fluorine-18-fluorodeoxyglucose (F-FDG)-PET/MR protocol with high-quality MRI of minimal acquisition-time and comparable diagnostic value to F-FDG-PET/computed tomography (CT). MATERIALS AND METHODS Fifteen healthy participants received PET/MRI and 10 patients with mediastinal tumours (eight non-small-cell lung, two oesophageal cancer) received F-FDG-PET/MRI immediately after F-FDG-PET/CT. Sequences volume interpolated breath-hold examination (T1-VIBE) and Half-Fourier acquisition single-shot turbo spin echo (T2-HASTE) were optimised by varying the parameters: breath-hold (BH, end-expiration), fat suppression (spectral adiabatic inversion recovery), and ECG-triggering (ECG, end-diastole). Image quality (IQ) of each sequence-variation was qualitatively scored by medical experts and quantitatively assessed by calculating signal-to-noise ratios, contrast relative to muscle, standardized-uptake-value, and tumour-to-blood ratios. Patient comfort was evaluated on patients' experience. Diagnostic accuracy of F-FDG-PET/MRI was compared to F-FDG-PET/CT, in reference to histopathology/cytopathology. RESULTS ECG-triggered T1-VIBE images showed the highest signal-to-noise ratio (P < 0.01) and the largest contrast between mediastinal soft-tissues, regardless of BH or free-breathing acquisition. IQ of ECG-triggered T1-VIBE scans in BH were scored qualitatively highest with good reader agreement (κ = 0.62). IQ of T2-HASTE was not significantly affected by BH acquisition (P > 0.9). Qualitative IQ of T1-VIBE and T2-HASTE declined after spectral adiabatic inversion recovery fat-suppression. All patients could maintain BH at end-expiration and reported no discomfort. Diagnostic performance of F-FDG-PET/MR was not significantly different from F-FDG-PET/CT with comparable staging, standardized-uptake-values, and tumour-to-blood ratios. However, T-status was more often over-staged on F-FDG-PET/CT, while N-status was more frequently under-staged on F-FDG-PET/MR. CONCLUSION ECG-triggered T1-VIBE sequences acquired during short, multiple BHs are recommended for mediastinal imaging using F-FDG-PET/MR. With dedicated protocols, F-FDG-PET/MRI will be useful in thoracic oncology and aid in diagnostic evaluation and tailored treatment decision-making.
Collapse
|
8
|
Abstract
High-quality imaging diagnostics play a fundamental role in patient and therapy management of cancers of the female pelvis. Magnetic resonance imaging (MRI) and positron emission tomography (PET) represent two important imaging modalities, which are frequently applied for primary tumor evaluation, therapy monitoring, and assessment of potential tumor relapse. Based on its high soft-tissue contrast, MRI has been shown superior toward CT for the determination of the local extent of primary tumors and for the differentiation between post-therapeutic changes and tumor relapse. Molecular imaging utilizing 18F-fluorodeoxyglucose (18F-FDG) PET facilitates an insight into tumor metabolism depending on the glycolytic activity of tumorous cells. As the current gold standard of hybrid imaging, 18F-FDG-PET/CT has been demonstrated highly accurate and superior to conventional imaging modalities for the detection of tumorous tissue due to the combined analysis of metabolic and morphologic data. Therefore, 18F-FDG-PET has emerged to become a well-established imaging modality for the detection, re-/staging and therapy response monitoring of a variety of solid tumors, including gynecologic cancers. Integrated PET/MRI systems have been successfully introduced into scientific and clinical applications within the past 8 years. This new-generation hybrid imaging technology enables the simultaneous acquisition of PET- and MR Datasets, providing complementary metabolic, functional, and morphologic information of tumorous tissue. Combining the high soft-tissue contrast of MRI and the metabolic information derived from PET, PET/MRI bears the potential to be utilized as an accurate and efficient diagnostic tool for primary tumor staging, therapy monitoring and restaging of tumors of the female pelvis and plays a valuable role in the management of targeted tumor therapies in the future.
Collapse
Affiliation(s)
- Lale Umutlu
- University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany.
| | - Gerald Antoch
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Ken Herrmann
- University Hospital Essen, Department of Nuclear Medicine, Essen, Germany
| | - Johannes Grueneisen
- University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany
| |
Collapse
|
9
|
Hope TA, Fayad ZA, Fowler KJ, Holley D, Iagaru A, McMillan AB, Veit-Haiback P, Witte RJ, Zaharchuk G, Catana C. Summary of the First ISMRM-SNMMI Workshop on PET/MRI: Applications and Limitations. J Nucl Med 2019; 60:1340-1346. [PMID: 31123099 PMCID: PMC6785790 DOI: 10.2967/jnumed.119.227231] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Since the introduction of simultaneous PET/MRI in 2011, there have been significant advancements. In this review, we highlight several technical advancements that have been made primarily in attenuation and motion correction and discuss the status of multiple clinical applications using PET/MRI. This review is based on the experience at the first PET/MRI conference cosponsored by the International Society for Magnetic Resonance in Medicine and the Society of Nuclear Medicine and Molecular Imaging.
Collapse
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kathryn J Fowler
- Department of Radiology, University of California San Diego, San Diego, California
| | - Dawn Holley
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Andrei Iagaru
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Patrick Veit-Haiback
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Robert J Witte
- Department of Radiology, Mayo Clinic, Rochester, Minnesota; and
| | - Greg Zaharchuk
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
10
|
Current concepts in advanced sinonasal mucosal melanoma: a single institution experience. Eur Arch Otorhinolaryngol 2019; 276:2259-2265. [PMID: 31098872 DOI: 10.1007/s00405-019-05458-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To present outcome measures of sinonasal mucosal melanoma (SMM) patients with particular focus on current radiological and therapeutic options, especially in the non-curative setting (immunotherapy). METHODS Retrospective study on SMM patients treated at our institution between January 1992 and December 2018. RESULTS FDG-PET/MRI has emerged as the new hybrid imaging modality, addressing the need for high local tissue contrast in the paranasal sinuses and the skull base, while allowing for whole-body staging in search for distant metastases, including the brain. Primary treatment protocols consisted of tumor resection in 30/34 patients (88%), palliative radiation therapy (RT) in 3/34 patients (9%) and best supportive care therapy in 1/34 patient (3%). Of all the initially operated patients, 25/30 patients (83%) received adjuvant RT. A total of 9/34 patients (26%) was treated with immunotherapy after the previous combined therapy. For patients treated in curative intention, we observed a 1-year overall survival (OS) of 60% (18/30 patients) and a 3-year OS of 40% (12/30 patients). For patients treated with immunotherapy, median progression-free survival (PFS) was 5 months (IQR 0-13.75), with a maximum PFS of 16 months (combination of nivolumab and ipilimumab). However, there was no difference in OS in patients treated with immunotherapy vs. no immunotherapy (log rank 0.99). CONCLUSIONS Sinonasal mucosal melanoma is a highly aggressive tumor, requiring multimodal therapy and developing a substantial incidence of distant metastases. The introduction of FDG-PET/MRI offers new possibilities in the radiological assessment of the tumor and immunotherapy has altered the management in the non-curative setting, resulting in a substantial progression-free survival in selected cases.
Collapse
|
11
|
How to Provide Gadolinium-Free PET/MR Cancer Staging of Children and Young Adults in Less than 1 h: the Stanford Approach. Mol Imaging Biol 2019; 20:324-335. [PMID: 28721605 DOI: 10.1007/s11307-017-1105-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To provide clinically useful gadolinium-free whole-body cancer staging of children and young adults with integrated positron emission tomography/magnetic resonance (PET/MR) imaging in less than 1 h. PROCEDURES In this prospective clinical trial, 20 children and young adults (11-30 years old, 6 male, 14 female) with solid tumors underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/MR on a 3T PET/MR scanner after intravenous injection of ferumoxytol (5 mg Fe/kg) and [18F]FDG (2-3 MBq/kg). Time needed for patient preparation, PET/MR image acquisition, and data processing was compared before (n = 5) and after (n = 15) time-saving interventions, using a Wilcoxon test. The ferumoxytol-enhanced PET/MR images were compared with clinical standard staging tests regarding radiation exposure and tumor staging results, using Fisher's exact tests. RESULTS Tailored workflows significantly reduced scan times from 36 to 24 min for head to mid thigh scans (p < 0.001). These streamlined PET/MR scans were obtained with significantly reduced radiation exposure (mean 3.4 mSv) compared to PET/CT with diagnostic CT (mean 13.1 mSv; p = 0.003). Using the iron supplement ferumoxytol "off label" as an MR contrast agent avoided gadolinium chelate administration. The ferumoxytol-enhanced PET/MR scans provided equal or superior tumor staging results compared to clinical standard tests in 17 out of 20 patients. Compared to PET/CT, PET/MR had comparable detection rates for pulmonary nodules with diameters of equal or greater than 5 mm (94 vs. 100 %), yet detected significantly fewer nodules with diameters of less than 5 mm (20 vs 100 %) (p = 0.03). [18F]FDG-avid nodules were detected with slightly higher sensitivity on the PET of the PET/MR compared to the PET of the PET/CT (59 vs 49 %). CONCLUSION Our streamlined ferumoxytol-enhanced PET/MR protocol provided cancer staging of children and young adults in less than 1 h with equivalent or superior clinical information compared to clinical standard staging tests. The detection of small pulmonary nodules with PET/MR needs to be improved.
Collapse
|
12
|
Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, Shah NJ, Egan GF. From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies. Hum Brain Mapp 2018; 39:5126-5144. [PMID: 30076750 DOI: 10.1002/hbm.24314] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Simultaneous Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning is a recent major development in biomedical imaging. The full integration of the PET detector ring and electronics within the MR system has been a technologically challenging design to develop but provides capacity for simultaneous imaging and the potential for new diagnostic and research capability. This article reviews state-of-the-art MR-PET hardware and software, and discusses future developments focusing on neuroimaging methodologies for MR-PET scanning. We particularly focus on the methodologies that lead to an improved synergy between MRI and PET, including optimal data acquisition, PET attenuation and motion correction, and joint image reconstruction and processing methods based on the underlying complementary and mutual information. We further review the current and potential future applications of simultaneous MR-PET in both systems neuroscience and clinical neuroimaging research. We demonstrate a simultaneous data acquisition protocol to highlight new applications of MR-PET neuroimaging research studies.
Collapse
Affiliation(s)
- Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | - Sharna D Jamadar
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Shenpeng Li
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | | | - Jakub Baran
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Nicholas Ferris
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Imaging, Monash Health, Clayton, Victoria, Australia
| | - Nadim Jon Shah
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum, Jülich, Germany
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Variable refocusing flip angle single-shot fast spin echo imaging of liver lesions: increased speed and lesion contrast. Abdom Radiol (NY) 2018; 43:593-599. [PMID: 28689221 DOI: 10.1007/s00261-017-1252-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate acquisition time and clinical image quality of a variable refocusing flip angle (vrf) single-shot fast spin echo (SSFSE) sequence in comparison with a conventional SSFSE sequence for imaging of liver lesions in patients undergoing whole-body PET/MRI for oncologic staging. METHODS A vrfSSFSE sequence was acquired in 43 patients with known pancreatic neuroendocrine tumors undergoing 68Ga-DOTA-TOC PET on a simultaneous time-of-flight 3.0T PET/MRI. Liver lesions ≥1.5 cm with radionucleotide uptake were analyzed. Contrast-to-noise ratios (CNRs) were measured, and four blinded radiologists assessed overall image quality. Differences in repetition time and CNR were assessed using a paired Student's t test with p < 0.05 considered statistically significant. Inter-reader variability was assessed with Fleiss' kappa statistic. RESULTS 53 eligible lesions in 27 patients were included for analysis. vrfSSFSE demonstrated higher mean lesion CNR compared to SSFSE (9.9 ± 4.1 vs. 6.7 ± 4.1, p < 0.001). Mean repetition time (TR) was 679 ± 97 ms for the vrfSSFSE sequence compared to 1139 ± 106 ms for SSFSE (p < 0.0001), corresponding to a 1.7-fold decrease in acquisition time. Overall quality of liver lesion and common bile duct images with the vrfSSFSE sequence was graded as superior than or equivalent to the SSFSE sequence for 59% and 67% of patients, respectively. CONCLUSIONS Compared to conventional SSFSE, vrfSSFSE resulted in improved lesion contrast on simultaneous PET/MRI in patients with liver metastases. Due to decreased SAR demands, vrfSSFSE significantly decreased TR, allowing coverage of the entire liver in a single twenty-second breath hold. This may have important clinical implications in the setting of PET/MRI, where scan time is limited by the necessity of whole-body image acquisition in addition to bed specific imaging.
Collapse
|
14
|
Pulmonary nodule detection in oncological patients - Value of respiratory-triggered, periodically rotated overlapping parallel T2-weighted imaging evaluated with PET/CT-MR. Eur J Radiol 2017; 98:165-170. [PMID: 29279157 DOI: 10.1016/j.ejrad.2017.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE To prospectively evaluate the detection and conspicuity of pulmonary nodules in an oncological population, using a tri-modality PET/CT-MR protocol including a respiration-gated T2-PROPELLER sequence for possible integration into a simultaneous PET/MR protocol. METHODS 149 patients referred for staging of malignancy were prospectively enrolled in this single-center study. Imaging was performed on a tri-modality PET/CT-MR setup and was comprised of PET/CT and 3T-MR imaging with 3D dual-echo GRE pulse sequence (Dixon) and an axial respiration-gated T2-weighted PROPELLER (T2-P) sequence. Images were assessed for presence, conspicuity, size and interpretation of the pulmonary parenchymal nodules. McNemar's test was used to evaluate paired differences in nodule detection rates between MR and CT from PET/CT. The correlation of pulmonary nodule size in CT and MR imaging was assessed using Pearson correlation coefficient. RESULTS 299 pulmonary nodules were detected on PET/CT. The detectability was significantly higher on T2-P (60%, p<0.01) compared to T1-weighted Dixon-type sequences (16.1-37.8%). T2-P had a significantly higher detection rate among FDG-positive (92.4%) and among confirmed malignant nodules (75.9%) compared to T1-Dixon. Nodules <10mm were detected less often by MR sequences than by CT (p < 0.01). However, nodules >10mm were detected equally well with T2-P (92.2%) and CT (p >0.05). In a per-patient analysis, there was no significant change in the clinical interpretation of the nodules detected with T2-P and CT. CONCLUSION Despite the overall lower detection rate compared with CT, the free-breathing respiratory gating T2-w sequence showed higher detectability in all evaluated categories compared to breath-hold T1-weighted MR sequences. Specifically, the T2-P was found to be not statistically different from CT in FDG-positive nodules, in detection of nodules >10mm and concerning conspicuity of pulmonary nodules. Overall, the additional time investment into T2-P seems to be justified since clinical relevant assessment of pulmonary lung nodules can mostly be done by T2-P in a whole body PET/MR staging of oncologic patients.
Collapse
|
15
|
Zhang XY, Yang ZL, Lu GM, Yang GF, Zhang LJ. PET/MR Imaging: New Frontier in Alzheimer's Disease and Other Dementias. Front Mol Neurosci 2017; 10:343. [PMID: 29163024 PMCID: PMC5672108 DOI: 10.3389/fnmol.2017.00343] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia; a progressive neurodegenerative disease that currently lacks an effective treatment option. Early and accurate diagnosis, in addition to quick elimination of differential diagnosis, allows us to provide timely treatments that delay the progression of AD. Imaging plays an important role for the early diagnosis of AD. The newly emerging PET/MR imaging strategies integrate the advantages of PET and MR to diagnose and monitor AD. This review introduces the development of PET/MR imaging systems, technical considerations of PET/MR imaging, special considerations of PET/MR in AD, and the system's potential clinical applications and future perspectives in AD.
Collapse
Affiliation(s)
- Xin Y Zhang
- Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhen L Yang
- Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guang M Lu
- Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gui F Yang
- Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Long J Zhang
- Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Optimized workflow and imaging protocols for whole-body oncologic PET/MRI. Jpn J Radiol 2016; 34:754-762. [PMID: 27714486 DOI: 10.1007/s11604-016-0584-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022]
Abstract
Although PET/MRI has the advantages of a simultaneous acquisition of PET and MRI, high soft-tissue contrast of the MRI images, and reduction of radiation exposure, its low profitability and long acquisition time are significant problems in clinical settings. Thus, MRI protocols that meet oncological purposes need to be used in order to reduce examination time while securing detectability. Currently, half-Fourier acquisition single-shot turbo spin echo and 3D-T1 volumetric interpolated breath-hold examination may be the most commonly used sequences for whole-body imaging due to their shorter acquisition time and higher diagnostic accuracy. Although there have been several reports that adding diffusion weighted image (DWI) to PET/MRI protocol has had no effect on tumor detection to date, in cases of liver, kidney, bladder, and prostate cancer, the use of DWI may be beneficial in detecting lesions. Another possible option is to scan each region with different MRI sequences instead of scanning the whole body using one sequence continuously. We herein report a workflow and imaging protocols for whole-body oncologic PET/MRI using an integrated system in the clinical routine, designed for the detection, for example by cancer screening, of metastatic lesions, in order to help future users optimize their workflow and imaging protocols.
Collapse
|
17
|
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging. J Thorac Imaging 2016; 31:215-27. [DOI: 10.1097/rti.0000000000000210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Lee DH, Lee JM. Whole-body PET/MRI for colorectal cancer staging: Is it the way forward? J Magn Reson Imaging 2016; 45:21-35. [DOI: 10.1002/jmri.25337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Dong Ho Lee
- Department of Radiology; Seoul National University Hospital; Seoul Korea
- Seoul National University College of Medicine; Seoul Korea
| | - Jeong Min Lee
- Department of Radiology; Seoul National University Hospital; Seoul Korea
- Seoul National University College of Medicine; Seoul Korea
- Institute of Radiation Medicine; Seoul National University Medical Research Center; Seoul Korea
| |
Collapse
|
19
|
de Galiza Barbosa F, Delso G, Ter Voert EEGW, Huellner MW, Herrmann K, Veit-Haibach P. Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold? Clin Radiol 2016; 71:660-72. [PMID: 27108800 DOI: 10.1016/j.crad.2016.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 12/19/2022]
Abstract
Integrated positron-emission tomography and computed tomography (PET/CT) is one of the most important imaging techniques to have emerged in oncological practice in the last decade. Hybrid imaging, in general, remains a rapidly growing field, not only in developing countries, but also in western industrialised healthcare systems. A great deal of technological development and research is focused on improving hybrid imaging technology further and introducing new techniques, e.g., integrated PET and magnetic resonance imaging (PET/MRI). Additionally, there are several new PET tracers on the horizon, which have the potential to broaden clinical applications in hybrid imaging for diagnosis as well as therapy. This article aims to highlight some of the major technical and clinical advances that are currently taking place in PET/CT and PET/MRI that will potentially maintain the position of hybrid techniques at the forefront of medical imaging technologies.
Collapse
Affiliation(s)
- F de Galiza Barbosa
- Department of Nuclear Medicine, University Hospital Zurich, Switzerland; University of Zurich, Switzerland
| | - G Delso
- Department of Nuclear Medicine, University Hospital Zurich, Switzerland; GE Healthcare, Waukesha, WI, USA
| | - E E G W Ter Voert
- Department of Nuclear Medicine, University Hospital Zurich, Switzerland; University of Zurich, Switzerland
| | - M W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Switzerland; University of Zurich, Switzerland; Department of Neuroradiology, University Hospital Zurich, Switzerland
| | - K Herrmann
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, United States; Department of Nuclear Medicine, Universitätsklinikum Würzburg, Oberdürrbacher, Str. 6, Würzburg, Germany
| | - P Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, Switzerland; University of Zurich, Switzerland; Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland.
| |
Collapse
|
20
|
Fraum TJ, Fowler KJ, McConathy J. PET/MRI: Emerging Clinical Applications in Oncology. Acad Radiol 2016; 23:220-36. [PMID: 26521689 DOI: 10.1016/j.acra.2015.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 08/08/2015] [Accepted: 09/27/2015] [Indexed: 01/09/2023]
Abstract
Positron emission tomography (PET), commonly performed in conjunction with computed tomography (CT), has revolutionized oncologic imaging. PET/CT has become the standard of care for the initial staging and assessment of treatment response for many different malignancies. Despite this success, PET/CT is often supplemented by magnetic resonance imaging (MRI), which offers superior soft-tissue contrast and a means of assessing cellular density with diffusion-weighted imaging. Consequently, PET/MRI, the newest clinical hybrid imaging modality, has the potential to provide added value over PET/CT or MRI alone. The purpose of this article is to provide a comprehensive review of the current body of literature pertaining to the clinical performance of PET/MRI, with the aim of summarizing current evidence and identifying gaps in knowledge to direct clinical expansion and future research. Multiple example cases are also provided to illustrate the central findings of these publications.
Collapse
|
21
|
Bashir U, Mallia A, Stirling J, Joemon J, MacKewn J, Charles-Edwards G, Goh V, Cook GJ. PET/MRI in Oncological Imaging: State of the Art. Diagnostics (Basel) 2015; 5:333-57. [PMID: 26854157 PMCID: PMC4665605 DOI: 10.3390/diagnostics5030333] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 02/08/2023] Open
Abstract
Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging.
Collapse
Affiliation(s)
- Usman Bashir
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - Andrew Mallia
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - James Stirling
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - John Joemon
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - Jane MacKewn
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - Geoff Charles-Edwards
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- Medical Physics, Guy's & St Thomas' Hospitals NHS Foundation Trust, London, SE1 7EH, UK.
| | - Vicky Goh
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- Department of Radiology, Guy's & St Thomas' Hospitals NHS Foundation Trust, London, SE1 7EH, UK.
| | - Gary J Cook
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
22
|
|
23
|
Incorporation of Time-of-Flight Information Reduces Metal Artifacts in Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging. Invest Radiol 2015; 50:423-9. [DOI: 10.1097/rli.0000000000000146] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Schaarschmidt BM, Grueneisen J, Heusch P, Gomez B, Beiderwellen K, Ruhlmann V, Umutlu L, Quick HH, Antoch G, Buchbender C. Oncological whole-body staging in integrated (18)F-FDG PET/MR: Value of different MR sequences for simultaneous PET and MR reading. Eur J Radiol 2015; 84:1285-92. [PMID: 25975895 DOI: 10.1016/j.ejrad.2015.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/10/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate different magnetic resonance (MR) imaging sequences in integrated positron emission tomography (PET)/MR concerning their ability to detect tumors and allocate increased radionuclide uptake on (18)F-fluorodeoxyglucose ((18)F-FDG) PET in intraindividual comparison with computed tomography (CT) from PET/CT. MATERIAL AND METHODS Sixty-one patients (34 female, 27 male, mean age 57.6 y) who were examined with contrast-enhanced PET/CT and subsequent PET/MR (mean delay for PET/MR after injection: 147 ± 43 min) were included. A maximum of ten (18)F-FDG-avid lesions per patient were analyzed on CT from PET/CT and with the following MR sequences from PET/MR: T2, turbo inversion recovery magnitude (TIRM), non-enhanced T1, contrast-enhanced T1, and diffusion-weighted imaging (DWI). All lesions were rated using a four-point ordinal scale (scored from 0 to 3) concerning visual detectability of the lesion against the surrounding background and anatomical allocation of the PET finding. In each category (detectability and allocation), Wilcoxon rank sum tests were performed. Bonferroni-Holm correction was performed to prevent α-error accumulation. RESULTS In 225 (18)F-FDG-avid lesions (156 confirmed as malignant by radiological follow up, 69 by histopathology), visual detectability was comparably high on CT (mean: 2.5 ± 0.9), TIRM (mean: 2.5 ± 0.9), T2 (mean: 2.4 ± 0.9), and DWI (mean: 2.5 ± 1.0) and was significantly higher than on non-enhanced T1 (mean: 2.2 ± 1.0). While anatomic allocation of the PET finding was comparable with CT (mean: 2.6 ± 0.7), T2 (mean: 2.6 ± 0.7), and TIRM (mean: 2.8 ± 0.7), it was significantly higher compared to DWI (mean: 2.1 ± 1.0) and non-enhanced T1 (mean: 2.4 ± 0.8). CONCLUSION In conclusion, T2, TIRM, and contrast-enhanced T1 provide a high quality of lesion detectability and anatomical allocation of FDG-avid foci. Their performance is at least comparable to contrast-enhanced PET/CT. Non-enhanced T1 may be omitted and the necessity of DWI should be further investigated for specific questions, such as assessment of the liver.
Collapse
Affiliation(s)
- Benedikt M Schaarschmidt
- Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany; Univ Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany.
| | - Johannes Grueneisen
- Univ Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany
| | - Philipp Heusch
- Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany.
| | - Benedikt Gomez
- Univ Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, D-45147 Essen, Germany
| | - Karsten Beiderwellen
- Univ Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany
| | - Verena Ruhlmann
- Univ Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, D-45147 Essen, Germany
| | - Lale Umutlu
- Univ Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Gerald Antoch
- Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Christian Buchbender
- Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| |
Collapse
|
25
|
Thoracic staging of non-small-cell lung cancer using integrated 18F-FDG PET/MR imaging: diagnostic value of different MR sequences. Eur J Nucl Med Mol Imaging 2015; 42:1257-67. [DOI: 10.1007/s00259-015-3050-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/16/2015] [Indexed: 12/27/2022]
|
26
|
Fraum TJ, Fowler KJ, McConathy J, Parent EE, Dehdashti F, Grigsby PW, Siegel BA. PET/MRI for the body imager: abdominal and pelvic oncologic applications. ACTA ACUST UNITED AC 2015; 40:1387-404. [DOI: 10.1007/s00261-015-0390-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Yoo HJ, Lee JS, Lee JM. Integrated whole body MR/PET: where are we? Korean J Radiol 2015; 16:32-49. [PMID: 25598673 PMCID: PMC4296276 DOI: 10.3348/kjr.2015.16.1.32] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/09/2014] [Indexed: 01/16/2023] Open
Abstract
Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed.
Collapse
Affiliation(s)
- Hye Jin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul 110-744, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul 110-744, Korea. ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744, Korea
| |
Collapse
|
28
|
Ramalho M, AlObaidy M, Catalano OA, Guimaraes AR, Salvatore M, Semelka RC. MR-PET of the body: Early experience and insights. Eur J Radiol Open 2014; 1:28-39. [PMID: 26937425 PMCID: PMC4750620 DOI: 10.1016/j.ejro.2014.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/01/2014] [Indexed: 12/19/2022] Open
Abstract
MR-PET is a novel imaging modality that combines anatomic and metabolic data acquisition, allowing for simultaneous depiction of morphological and functional abnormalities with an excellent soft tissue contrast and good spatial resolution; as well as accurate temporal and spatial image fusion; while substantially reducing radiation dose when compared with PET-CT. In this review, we will discuss MR-PET basic principles and technical challenges and limitations, explore some practical considerations, and cover the main clinical applications, while shedding some light on some of the future trends regarding this new imaging technique.
Collapse
Affiliation(s)
- Miguel Ramalho
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mamdoh AlObaidy
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Onofrio A Catalano
- Department of Radiology, SDN-IRCCS and University of Naples "Parthenope", Naples, Italy
| | | | - Marco Salvatore
- Department of Radiology, University of Naples "Federico II", Naples, Italy
| | - Richard C Semelka
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Abstract
Cardiac multimodality (hybrid) imaging can be obtained from a variety of techniques, such as nuclear medicine with single photon emission computed tomography (SPECT) and positron emission tomography (PET), or radiology with multislice computed tomography (CT), magnetic resonance (MR) and echography. They are typically combined in a side-by-side or fusion mode in order to provide functional and morphological data to better characterise coronary artery disease, with more proven efficacy than when used separately. The gained information is then used to guide revascularisation procedures. We present an up-to-date comprehensive overview of multimodality imaging already in clinical use, as well as a combination of techniques with promising or developing applications.
Collapse
|
30
|
|