1
|
Gu W, Zhu Z, Liu Z, Wang Y, Li Y, Xu T, Liu W, Luo G, Wang K, Zhou Y. Self-supervised neural network for Patlak-based parametric imaging in dynamic [ 18F]FDG total-body PET. Eur J Nucl Med Mol Imaging 2025; 52:1436-1447. [PMID: 39621094 DOI: 10.1007/s00259-024-07008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/25/2024] [Indexed: 02/20/2025]
Abstract
PURPOSE The objective of this study is to generate reliable Ki parametric images from a shortened [18F]FDG total-body PET for clinical applications using a self-supervised neural network algorithm. METHODS We proposed a self-supervised neural network algorithm with Patlak graphical analysis (SN-Patlak) to generate Ki images from shortened dynamic [18F]FDG PET without 60-min full-dynamic PET-based training. The algorithm deeply integrates neural network architecture with a Patlak method, employing the fitting error of the Patlak plot as the neural network's loss function. As the 0-60 min blood time activity curve (TAC) required by the standard Patlak plot is unobtainable from shortened dynamic PET scans, a population-based "normalized time" (integral-to-instantaneous blood concentration ratio) was used for the linear fitting of Patlak plot of t* to 60 min, and the modified Patlak plot equation was then incorporated into the neural network. Ki images were generated by minimizing the difference between the input layer (measured tissue-to-blood concentration ratios) and the output layer (predicted tissue-to-blood concentration ratios). The effects of t* (20 to 50 min post injection) on the Ki images generated from the SN-Patlak and standard Patlak was evaluated using the normalized mean square error (NMSE), and Pearson's correlation coefficient (Pearson's r). RESULTS The Ki images generated by the SN-Patlak are robust to the dynamic PET scan duration, and the Ki images generated by the SN-Patlak from just a 10-minute (50-60 min post-injection) dynamic [18F]FDG total-body PET scan are comparable to those generated by the standard Patlak method from 40-min (20-60 min post injection) with NMSE = 0.15 ± 0.03 and Pearson's r = 0.93 ± 0.01. CONCLUSIONS The SN-Patlak parametric imaging algorithm is robust and reliable for quantification of 10-min dynamic [18F]FDG total-body PET.
Collapse
Affiliation(s)
- Wenjian Gu
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
- United Imaging Healthcare Technology Group Co., Ltd, Shanghai, China
| | - Zhanshi Zhu
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
- United Imaging Healthcare Technology Group Co., Ltd, Shanghai, China
| | - Ze Liu
- United Imaging Healthcare Technology Group Co., Ltd, Shanghai, China
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Yihan Wang
- United Imaging Healthcare Technology Group Co., Ltd, Shanghai, China
| | - Yanxiao Li
- United Imaging Healthcare Technology Group Co., Ltd, Shanghai, China
| | - Tianyi Xu
- United Imaging Healthcare Technology Group Co., Ltd, Shanghai, China
| | - Weiping Liu
- United Imaging Healthcare Technology Group Co., Ltd, Shanghai, China
- Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Gongning Luo
- Faculty of Computing, Harbin Institute of Technology, Harbin, China.
| | - Kuanquan Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, China.
| | - Yun Zhou
- United Imaging Healthcare Technology Group Co., Ltd, Shanghai, China.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Caldarella C, De Risi M, Massaccesi M, Miccichè F, Bussu F, Galli J, Rufini V, Leccisotti L. Role of 18F-FDG PET/CT in Head and Neck Squamous Cell Carcinoma: Current Evidence and Innovative Applications. Cancers (Basel) 2024; 16:1905. [PMID: 38791983 PMCID: PMC11119768 DOI: 10.3390/cancers16101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This article provides an overview of the use of 18F-FDG PET/CT in various clinical scenarios of head-neck squamous cell carcinoma, ranging from initial staging to treatment-response assessment, and post-therapy follow-up, with a focus on the current evidence, debated issues, and innovative applications. Methodological aspects and the most frequent pitfalls in head-neck imaging interpretation are described. In the initial work-up, 18F-FDG PET/CT is recommended in patients with metastatic cervical lymphadenectomy and occult primary tumor; moreover, it is a well-established imaging tool for detecting cervical nodal involvement, distant metastases, and synchronous primary tumors. Various 18F-FDG pre-treatment parameters show prognostic value in terms of disease progression and overall survival. In this scenario, an emerging role is played by radiomics and machine learning. For radiation-treatment planning, 18F-FDG PET/CT provides an accurate delineation of target volumes and treatment adaptation. Due to its high negative predictive value, 18F-FDG PET/CT, performed at least 12 weeks after the completion of chemoradiotherapy, can prevent unnecessary neck dissections. In addition to radiomics and machine learning, emerging applications include PET/MRI, which combines the high soft-tissue contrast of MRI with the metabolic information of PET, and the use of PET radiopharmaceuticals other than 18F-FDG, which can answer specific clinical needs.
Collapse
Affiliation(s)
- Carmelo Caldarella
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
| | - Marina De Risi
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
| | - Mariangela Massaccesi
- Radiation Oncology Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesco Miccichè
- Radiation Oncology Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
| | - Francesco Bussu
- Otorhinolaryngology Operative Unit, Azienda Ospedaliero Universitaria Sassari, 07100 Sassari, Italy;
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Jacopo Galli
- Otorhinolaryngology Unit, Department of Neurosciences, Sensory Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Section of Otolaryngology, Department of Head-Neck and Sensory Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucia Leccisotti
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
3
|
Mei R, Pyka T, Sari H, Fanti S, Afshar-Oromieh A, Giger R, Caobelli F, Rominger A, Alberts I. The clinical acceptability of short versus long duration acquisitions for head and neck cancer using long-axial field-of-view PET/CT: a retrospective evaluation. Eur J Nucl Med Mol Imaging 2024; 51:1436-1443. [PMID: 38095670 PMCID: PMC10957684 DOI: 10.1007/s00259-023-06516-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE To evaluate the utility of long duration (10 min) acquisitions compared to standard 4 min scans in the evaluation of head and neck cancer (HNC) using a long-axial field-of-view (LAFOV) system in 2-[18F]FDG PET/CT. METHODS HNC patients undergoing LAFOV PET/CT were included retrospectively according to a predefined sample size calculation. For each acquisition, FDG avid lymph nodes (LN) which were highly probable or equivocal for malignancy were identified by two board certified nuclear medicine physicians in consensus. The aim of this study was to establish the clinical acceptability of short-duration (4 min, C40%) acquisitions compared to full-count (10 min, C100%) in terms of the detection of LN metastases in HNC. Secondary endpoints were the positive predictive value for LN status (PPV) and comparison of SUVmax at C40% and C100%. Histology reports or confirmatory imaging were the reference standard. RESULTS A total of 1218 records were screened and target recruitment was met with n = 64 HNC patients undergoing LAFOV. Median age was 65 years (IQR: 59-73). At C40%, a total of 387 lesions were detected (highly probable LN n = 274 and equivocal n = 113. The total number of lesions detected at C100% acquisition was 439, of them 291 (66%) highly probable LN and 148 (34%) equivocal. Detection rate between the two acquisitions did not demonstrate any significant differences (Pearson's Chi-Square test, p = 0.792). Sensitivity, specificity, PPV, NPV and accuracy for C40% were 83%, 44%, 55%, 76% and 36%, whilst for C100% were 85%, 56%, 55%, 85% and 43%, respectively. The improved accuracy reached borderline significance (p = 0.057). At the ROC analysis, lower SUVmax was identified for C100% (3.5) compared to C40% (4.5). CONCLUSION In terms of LN detection, C40% acquisitions showed no significant difference compared to the C100% acquisitions. There was some improvement for lesions detection at C100%, with a small increment in accuracy reaching borderline significance, suggestive that the higher sensitivity afforded by LAFOV might translate to improved clinical performance in some patients.
Collapse
Affiliation(s)
- Riccardo Mei
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Stefano Fanti
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Roland Giger
- Department of Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Molecular Imaging and Therapy, BC Cancer Agency, Vancouver, BC, Canada
| |
Collapse
|
4
|
Wang H, Wu Y, Huang Z, Li Z, Zhang N, Fu F, Meng N, Wang H, Zhou Y, Yang Y, Liu X, Liang D, Zheng H, Mok GSP, Wang M, Hu Z. Deep learning-based dynamic PET parametric K i image generation from lung static PET. Eur Radiol 2023; 33:2676-2685. [PMID: 36399164 DOI: 10.1007/s00330-022-09237-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES PET/CT is a first-line tool for the diagnosis of lung cancer. The accuracy of quantification may suffer from various factors throughout the acquisition process. The dynamic PET parametric Ki provides better quantification and improve specificity for cancer detection. However, parametric imaging is difficult to implement clinically due to the long acquisition time (~ 1 h). We propose a dynamic parametric imaging method based on conventional static PET using deep learning. METHODS Based on the imaging data of 203 participants, an improved cycle generative adversarial network incorporated with squeeze-and-excitation attention block was introduced to learn the potential mapping relationship between static PET and Ki parametric images. The image quality of the synthesized images was qualitatively and quantitatively evaluated by using several physical and clinical metrics. Statistical analysis of correlation and consistency was also performed on the synthetic images. RESULTS Compared with those of other networks, the images synthesized by our proposed network exhibited superior performance in both qualitative and quantitative evaluation, statistical analysis, and clinical scoring. Our synthesized Ki images had significant correlation (Pearson correlation coefficient, 0.93), consistency, and excellent quantitative evaluation results with the Ki images obtained in standard dynamic PET practice. CONCLUSIONS Our proposed deep learning method can be used to synthesize highly correlated and consistent dynamic parametric images obtained from static lung PET. KEY POINTS • Compared with conventional static PET, dynamic PET parametric Ki imaging has been shown to provide better quantification and improved specificity for cancer detection. • The purpose of this work was to develop a dynamic parametric imaging method based on static PET images using deep learning. • Our proposed network can synthesize highly correlated and consistent dynamic parametric images, providing an additional quantitative diagnostic reference for clinicians.
Collapse
Affiliation(s)
- Haiyan Wang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, 999078, SAR, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zhenxing Huang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhicheng Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fangfang Fu
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Haining Wang
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518045, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group, Shanghai, 201807, China
| | - Yongfeng Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, 999078, SAR, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Katal S, Eibschutz LS, Saboury B, Gholamrezanezhad A, Alavi A. Advantages and Applications of Total-Body PET Scanning. Diagnostics (Basel) 2022; 12:diagnostics12020426. [PMID: 35204517 PMCID: PMC8871405 DOI: 10.3390/diagnostics12020426] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have focused on the development of total-body PET scanning in a variety of fields such as clinical oncology, cardiology, personalized medicine, drug development and toxicology, and inflammatory/infectious disease. Given its ultrahigh detection sensitivity, enhanced temporal resolution, and long scan range (1940 mm), total-body PET scanning can not only image faster than traditional techniques with less administered radioactivity but also perform total-body dynamic acquisition at a longer delayed time point. These unique characteristics create several opportunities to improve image quality and can provide a deeper understanding regarding disease detection, diagnosis, staging/restaging, response to treatment, and prognostication. By reviewing the advantages of total-body PET scanning and discussing the potential clinical applications for this innovative technology, we can address specific issues encountered in routine clinical practice and ultimately improve patient care.
Collapse
Affiliation(s)
- Sanaz Katal
- Independent Researcher, Melbourne 3000, Australia;
| | - Liesl S. Eibschutz
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA; (L.S.E.); (A.G.)
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
6
|
Total-body PET. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Kinetic metrics of 18F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur J Nucl Med Mol Imaging 2021; 48:2363-2372. [DOI: 10.1007/s00259-020-05124-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023]
|
8
|
Keramida G, Peters AM. FDG PET/CT of the non‐malignant liver in an increasingly obese world population. Clin Physiol Funct Imaging 2020; 40:304-319. [DOI: 10.1111/cpf.12651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Georgia Keramida
- Department of Nuclear Medicine Royal Brompton and HarefieldNHS Foundation Trust London UK
| | - A. Michael Peters
- Department of Nuclear Medicine King’s College HospitalNHS Foundation Trusts London UK
| |
Collapse
|
9
|
Kuang Z, Yang Q, Wang X, Fu X, Ren N, Sang Z, Wu S, Zheng Y, Zhang X, Hu Z, Du J, Liang D, Liu X, Zheng H, Yang Y. A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers. Phys Med Biol 2018; 63:045009. [PMID: 29438101 DOI: 10.1088/1361-6560/aaa94e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3 × 3 × 20 mm3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3 × 3 mm2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E > 400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.
Collapse
|
10
|
Berg E, Zhang X, Bec J, Judenhofer MS, Patel B, Peng Q, Kapusta M, Schmand M, Casey ME, Tarantal AF, Qi J, Badawi RD, Cherry SR. Development and Evaluation of mini-EXPLORER: A Long Axial Field-of-View PET Scanner for Nonhuman Primate Imaging. J Nucl Med 2018; 59:993-998. [PMID: 29419483 DOI: 10.2967/jnumed.117.200519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
We describe a long axial field-of-view (FOV) PET scanner for high-sensitivity and total-body imaging of nonhuman primates and present the physical performance and first phantom and animal imaging results. Methods: The mini-EXPLORER PET scanner was built using the components of a clinical scanner reconfigured with a detector ring diameter of 43.5 cm and an axial length of 45.7 cm. National Electrical Manufacturers Association (NEMA) NU-2 and NU-4 phantoms were used to measure sensitivity and count rate performance. Reconstructed spatial resolution was investigated by imaging a radially stepped point source and a Derenzo phantom. The effect of the wide acceptance angle was investigated by comparing performance with maximum acceptance angles of 14°-46°. Lastly, an initial assessment of the in vivo performance of the mini-EXPLORER was undertaken with a dynamic 18F-FDG nonhuman primate (rhesus monkey) imaging study. Results: The NU-2 total sensitivity was 5.0%, and the peak noise-equivalent count rate measured with the NU-4 monkey scatter phantom was 1,741 kcps, both obtained using the maximum acceptance angle (46°). The NU-4 scatter fraction was 16.5%, less than 1% higher than with a 14° acceptance angle. The reconstructed spatial resolution was approximately 3.0 mm at the center of the FOV, with a minor loss in axial spatial resolution (0.5 mm) when the acceptance angle increased from 14° to 46°. The rhesus monkey 18F-FDG study demonstrated the benefit of the high sensitivity of the mini-EXPLORER, including fast imaging (1-s early frames), excellent image quality (30-s and 5-min frames), and late-time-point imaging (18 h after injection), all obtained at a single bed position that captured the major organs of the rhesus monkey. Conclusion: This study demonstrated the physical performance and imaging capabilities of a long axial FOV PET scanner designed for high-sensitivity imaging of nonhuman primates. Further, the results of this study suggest that a wide acceptance angle can be used with a long axial FOV scanner to maximize sensitivity while introducing only minor trade-offs such as a small increase in scatter fraction and slightly degraded axial spatial resolution.
Collapse
Affiliation(s)
- Eric Berg
- Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Xuezhu Zhang
- Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Julien Bec
- Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Martin S Judenhofer
- Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Brijesh Patel
- Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Qiyu Peng
- Department of Biomedical Engineering, University of California-Davis, Davis, California.,Cell and Tissue Imaging Department, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | | | | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California-Davis, Davis, California; and
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California-Davis, Davis, California.,Department of Radiology, University of California-Davis, Sacramento, California
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California-Davis, Davis, California.,Department of Radiology, University of California-Davis, Sacramento, California
| |
Collapse
|
11
|
Alavi A, Werner TJ, Høilund-Carlsen PF. PET-based imaging to detect and characterize cardiovascular disorders: Unavoidable path for the foreseeable future. J Nucl Cardiol 2018; 25:203-207. [PMID: 28900846 DOI: 10.1007/s12350-017-1062-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care. J Nucl Med 2017; 59:3-12. [PMID: 28935835 DOI: 10.2967/jnumed.116.184028] [Citation(s) in RCA: 441] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
PET is widely considered the most sensitive technique available for noninvasively studying physiology, metabolism, and molecular pathways in the living human being. However, the utility of PET, being a photon-deficient modality, remains constrained by factors including low signal-to-noise ratio, long imaging times, and concerns about radiation dose. Two developments offer the potential to dramatically increase the effective sensitivity of PET. First by increasing the geometric coverage to encompass the entire body, sensitivity can be increased by a factor of about 40 for total-body imaging or a factor of about 4-5 for imaging a single organ such as the brain or heart. The world's first total-body PET/CT scanner is currently under construction to demonstrate how this step change in sensitivity affects the way PET is used both in clinical research and in patient care. Second, there is the future prospect of significant improvements in timing resolution that could lead to further effective sensitivity gains. When combined with total-body PET, this could produce overall sensitivity gains of more than 2 orders of magnitude compared with existing state-of-the-art systems. In this article, we discuss the benefits of increasing body coverage, describe our efforts to develop a first-generation total-body PET/CT scanner, discuss selected application areas for total-body PET, and project the impact of further improvements in time-of-flight PET.
Collapse
Affiliation(s)
- Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, California .,Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Sacramento, California
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, California
| | | | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, California.,Department of Radiology, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
13
|
Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: Transforming the role of positron emission tomography. Sci Transl Med 2017; 9:eaaf6169. [PMID: 28298419 PMCID: PMC5629037 DOI: 10.1126/scitranslmed.aaf6169] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022]
Abstract
The first total-body positron emission tomography (TB-PET) scanner represents a radical change for experimental medicine and diagnostic health care.
Collapse
Affiliation(s)
| | | | - Joel S Karp
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William W Moses
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pat Price
- Hammersmith Hospital, Imperial College London, London W12 0NN, U.K
| | - Terry Jones
- University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
14
|
Keramida G, Anagnostopoulos CD, Peters AM. The extent to which standardized uptake values reflect FDG phosphorylation in the liver and spleen as functions of time after injection of 18F-fluorodeoxyglucose. EJNMMI Res 2017; 7:13. [PMID: 28176243 PMCID: PMC5296268 DOI: 10.1186/s13550-017-0254-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 01/23/2023] Open
Abstract
Purpose In FDG PET/CT, standardized uptake value (SUV) is used to measure metabolic activity but detects un-phosphorylated FDG as well as phosphorylated FDG (FDG6P). Our aim was to determine the proportions of intrahepatic and intrasplenic FDG that are phosphorylated after FDG injection and compare them with SUVs. Methods Sixty patients undergoing whole-body PET/CT 60 min post-injection of FDG first had dynamic PET imaging for 30 min with measurement of hepatic and splenic FDG clearances using Patlak-Rutland analysis. The gradient of the Patlak-Rutland plot, which is proportional to clearance (Ki), was normalized to the intercept, which is proportional to FDG distribution volume (V(0)) with the same proportionality constant. Using measured values of Ki/V(0), FDG6P/FDG ratios as functions of time in the two organs were measured for assumed FDG blood disappearance half-times of 40, 50 and 60 min. Hepatic and splenic SUVs were measured from whole-body PET/CT. Results The mean (SD) Ki/V(0) was 0.0036 (0.0021) and 0.0060 (0.0041) ml/min/ml for the liver and spleen, respectively, but the hepatic SUV was 1.36-fold higher than the splenic SUV. This discrepancy was explained by the hepatic V(0) being 1.6-fold higher than the splenic V(0). The percentages of FDG phosphorylated 60 min post-injection were 27, 25 and 23% for the liver and 39, 36 and 34% for the spleen, for blood clearance half-times of 40, 50 and 60 min, respectively. SUV indices correlated poorly with Ki/V(0) for both organs. Conclusions SUV is largely determined by un-phosphorylated FDG in dynamic exchange with blood FDG, explaining the poor correlations between SUV indices and Ki/V(0).
Collapse
Affiliation(s)
- Georgia Keramida
- Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton, UK
| | - Constantinos D Anagnostopoulos
- Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - A Michael Peters
- Clinical Imaging Sciences Centre, Brighton Sussex Medical School, Brighton, UK. .,Department of Nuclear Medicine, Royal Sussex County Hospital, Eastern Road, Brighton, BN2 5BE, UK.
| |
Collapse
|
15
|
Jones T, Townsend D. History and future technical innovation in positron emission tomography. J Med Imaging (Bellingham) 2017; 4:011013. [PMID: 28401173 PMCID: PMC5374360 DOI: 10.1117/1.jmi.4.1.011013] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 02/01/2023] Open
Abstract
Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare.
Collapse
Affiliation(s)
- Terry Jones
- University of California, Department of Radiology, Davis, California, United States
| | - David Townsend
- National University of Singapore, Department of Diagnostic Imaging, Singapore
| |
Collapse
|
16
|
Berg E, Roncali E, Kapusta M, Du J, Cherry SR. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography. Med Phys 2016; 43:939-50. [PMID: 26843254 DOI: 10.1118/1.4940355] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. METHODS This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. RESULTS Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3-3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%-7% with phosphor-coated crystals compared to uncoated crystals. CONCLUSIONS These results demonstrate the feasibility of obtaining TOF-DOI capabilities with simple block detector readout using phosphor-coated crystals.
Collapse
Affiliation(s)
- Eric Berg
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Maciej Kapusta
- Molecular Imaging, Siemens Healthcare, Knoxville, Tennessee 37932
| | - Junwei Du
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616
| |
Collapse
|
17
|
Schmall JP, Karp JS, Werner M, Surti S. Parallax error in long-axial field-of-view PET scanners-a simulation study. Phys Med Biol 2016; 61:5443-5455. [PMID: 27367971 DOI: 10.1088/0031-9155/61/14/5443] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is a growing interest in the design and construction of a PET scanner with a very long axial extent. One critical design challenge is the impact of the long axial extent on the scanner spatial resolution properties. In this work, we characterize the effect of parallax error in PET system designs having an axial field-of-view (FOV) of 198 cm (total-body PET scanner) using fully-3D Monte Carlo simulations. Two different scintillation materials were studied: LSO and LaBr3. The crystal size in both cases was 4 × 4 × 20 mm3. Several different depth-of-interaction (DOI) encoding techniques were investigated to characterize the improvement in spatial resolution when using a DOI capable detector. To measure spatial resolution we simulated point sources in a warm background in the center of the imaging FOV, where the effects of axial parallax are largest, and at several positions radially offset from the center. Using a line-of-response based ordered-subset expectation maximization reconstruction algorithm we found that the axial resolution in an LSO scanner degrades from 4.8 mm to 5.7 mm (full width at half max) at the center of the imaging FOV when extending the axial acceptance angle (α) from ±12° (corresponding to an axial FOV of 18 cm) to the maximum of ±67°-a similar result was obtained with LaBr3, in which the axial resolution degraded from 5.3 mm to 6.1 mm. For comparison we also measured the degradation due to radial parallax error in the transverse imaging FOV; the transverse resolution, averaging radial and tangential directions, of an LSO scanner was degraded from 4.9 mm to 7.7 mm, for a measurement at the center of the scanner compared to a measurement with a radial offset of 23 cm. Simulations of a DOI detector design improved the spatial resolution in all dimensions. The axial resolution in the LSO-based scanner, with α = ± 67°, was improved from 5.7 mm to 5.0 mm by incorporating a two-layer DOI detector. These results characterize the maximum axial blurring for a fully open 2 m long PET scanner and demonstrate that large sensitivity gains are possible with a modest reduction in resolution when using current clinical detector technology with no DOI capability.
Collapse
Affiliation(s)
- Jeffrey P Schmall
- Department of Radiology, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
18
|
Houshmand S, Salavati A, Segtnan EA, Grupe P, Høilund-Carlsen PF, Alavi A. Dual-time-point Imaging and Delayed-time-point Fluorodeoxyglucose-PET/Computed Tomography Imaging in Various Clinical Settings. PET Clin 2015; 11:65-84. [PMID: 26590445 DOI: 10.1016/j.cpet.2015.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The techniques of dual-time-point imaging (DTPI) and delayed-time-point imaging, which are mostly being used for distinction between inflammatory and malignant diseases, has increased the specificity of fluorodeoxyglucose (FDG)-PET for diagnosis and prognosis of certain diseases. A gradually increasing trend of FDG uptake over time has been shown in malignant cells, and a decreasing or constant trend has been shown in inflammatory/infectious processes. Tumor heterogeneity can be assessed by using early and delayed imaging because differences between primary versus metastatic sites become more detectable compared with single time points. This article discusses the applications of DTPI and delayed-time-point imaging.
Collapse
Affiliation(s)
- Sina Houshmand
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Ali Salavati
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Radiology, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Eivind Antonsen Segtnan
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, Odense C 5000, Denmark
| | - Peter Grupe
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, Odense C 5000, Denmark
| | | | - Abass Alavi
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Brill DA, MacKay JA. Image-driven pharmacokinetics: nanomedicine concentration across space and time. Nanomedicine (Lond) 2015; 10:2861-79. [PMID: 26370694 DOI: 10.2217/nnm.15.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clinical pharmacokinetics (PK) primarily measures the concentration of drugs in the blood. For nanomedicines it may be more relevant to determine concentration within a target tissue. The emerging field of image-driven PK, which utilizes clinically accepted molecular imaging technology, empirically and noninvasively, measures concentration in multiple tissues. Image-driven PK represents the intersection of PK and biodistribution, combining to provide models of concentration across space and time. Image-driven PK can be used both as a research tool and in the clinic. This review explores the history of pharmacokinetics, technologies used in molecular imaging (especially positron emission tomography) and research using image-driven pharmacokinetic analysis. When standardized, image-driven PK may have significant implications in preclinical development as well as clinical optimization of targeted nanomedicines.
Collapse
Affiliation(s)
- Dab A Brill
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - J Andrew MacKay
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Yoon HS, Lee JS. Bipolar analog signal multiplexing for position-sensitive PET block detectors. Phys Med Biol 2014; 59:7835-46. [DOI: 10.1088/0031-9155/59/24/7835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|