1
|
Lam MGEH, Garin E, Fowers KD, Mahvash A, Padia SA, Salem R. The relationship between yttrium-90 glass microspheres specific activity, particle density and treatment outcomes in HCC and mCRC. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07334-8. [PMID: 40399627 DOI: 10.1007/s00259-025-07334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE To investigate relationships between treatment week, relative to Ytrrium-90 (90Y) glass microsphere calibration (i.e., specific activity and particle density), and outcomes for hepatocellular carcinoma (HCC) or colorectal cancer liver metastasis (mCRC). METHODS Multinational, multicenter study TARGET (retrospective; n = 209 HCC patients) was combined with EPOCH (phase III trial; n = 428 mCRC patients). Efficacy included overall response rate (ORR), overall survival (OS), progression-free survival (PFS), hepatic PFS, and tumour marker response rates. Safety included clinical and laboratory toxicity. Retrospective multicompartment dosimetry, tumour and normal tissue absorbed dose were available for TARGET; single compartment dosimetry was available for EPOCH. RESULTS No efficacy relationship was found relative to treatment week for TARGET or EPOCH. mRECIST ORR in TARGET for weeks 1 and 2 were 74/125 (59.2%) and 55/84 (65.5%), and by RECIST 1.1 in EPOCH were 54/142 (38.0%) and 15/43 (34.9%), respectively (p > 0.05). Median OS for TARGET weeks 1 and 2 were 21.4 and 20.3 months (p = 0.07), and in EPOCH were 14.9 and 16.4 months, respectively (p = 0.37). No difference in the TARGET primary endpoint of hyperbilirubinemia was noted for weeks 1 and 2, odds ratio 0.64, p = 0.59. TARGET ≥ grade 3 device-related adverse events (AEs) for weeks 1 (16.8%) and 2 (26.2%) were not significantly different (p = 0.11). EPOCH rates of ≥ grade 3 asthenia for weeks 1 (9.2%) and 2 (23.3%) were statistically different (p = 0.01). CONCLUSIONS No efficacy treatment benefit for week 2 versus week 1 was observed in TARGET or EPOCH, but week 2 treatment trended towards a higher rate and severity of specific AEs.
Collapse
Affiliation(s)
- Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Huispostnummer E01.132, Postbus 85500, 3508 GA, Utrecht, The Netherlands.
| | - Etienne Garin
- Nuclear Medicine Department, Eugene Marquis Center, Univ Rennes, INSERM, INRA, Centre de Lutte Contre Le Cancer Eugène Marquis, Institut NUMECAN (Nutrition Metabolisms and Cancer), 35000, Rennes, France
| | | | - Armeen Mahvash
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siddharth A Padia
- Department of Radiology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Riad Salem
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Braat MN, Braat AJ, Lam MG. Toxicity comparison of yttrium-90 resin and glass microspheres radioembolization. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2024; 68:133-142. [PMID: 35762664 DOI: 10.23736/s1824-4785.22.03452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND To investigate the clinical, hematological and biochemical toxicity differences between glass and resin yttrium-90 (90Y)-microspheres radioembolization treatment of primary and metastatic liver disease. METHODS Between May 2014 and November 2016 all consecutive glass and resin 90Y microspheres radioembolization treatments were retrospectively analyzed. Biochemical, hematological and clinical data were collected at treatment day, two weeks, one month and three months follow-up. Post-treatment 90Y PET/CTs were assessed for the absorbed doses in non-tumorous liver volume (DNTLV) and tumor volume (DTV). Biochemical, hematological and clinical toxicity were compared between glass and resin using chi square tests and repeated ANOVA measures. Biochemical and clinical toxicity was correlated with DNTLV,total by means of Pearson correlation and independent t-tests. RESULTS A total of 85 patients were included (N.=44 glass, N.=41 resin). Clinical toxicity the day after treatment (i.e. abdominal pain [P=0.000], nausea [P=0.000] and vomiting [P=0.003]) was more prevalent for resin. Biochemical and hematological toxicities were similar for both microspheres. The DNTLV,total was significantly higher in patients with REILD grade ≥3 in the resin group (43.5 versus 33.3 Gy [P=0.050]). A similar non-significant trend was seen in the glass group: 95.0 versus 69.0 Gy [P=0.144]. CONCLUSIONS The clinical, hematological and biochemical toxicity of radioembolization treatment with glass and resin is comparable, however, post-embolization syndrome related complaints are more common for resin.
Collapse
Affiliation(s)
- Manon N Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands -
| | - Arthur J Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marnix G Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Fassia MK, Charalel RA. Techniques to Optimize Radioembolization Tumor Coverage. Semin Intervent Radiol 2024; 41:16-19. [PMID: 38495264 PMCID: PMC10940038 DOI: 10.1055/s-0043-1778659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Yttrium-90 (Y90) radioembolization has become a major locoregional treatment option for several primary and secondary liver cancers. Understanding the various factors that contribute to optimal tumor coverage including sphere count, embolization techniques, and catheter choice is important for all interventional radiologists while planning Y90 dosimetry and delivery. Here, we review these factors and the evidence supporting current practice paradigms.
Collapse
Affiliation(s)
- M. Kasim Fassia
- Division of Interventional Radiology, Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Resmi Ann Charalel
- Division of Interventional Radiology, Department of Radiology, Weill Cornell Medicine, New York, New York
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| |
Collapse
|
4
|
Busse NC, Al‐Ghazi MSAL, Abi‐Jaoudeh N, Alvarez D, Ayan AS, Chen E, Chuong MD, Dezarn WA, Enger SA, Graves SA, Hobbs RF, Jafari ME, Kim SP, Maughan NM, Polemi AM, Stickel JR. AAPM Medical Physics Practice Guideline 14.a: Yttrium-90 microsphere radioembolization. J Appl Clin Med Phys 2024; 25:e14157. [PMID: 37820316 PMCID: PMC10860558 DOI: 10.1002/acm2.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023] Open
Abstract
Radioembolization using Yttrium-90 (90 Y) microspheres is widely used to treat primary and metastatic liver tumors. The present work provides minimum practice guidelines for establishing and supporting such a program. Medical physicists play a key role in patient and staff safety during these procedures. Products currently available are identified and their properties and suppliers summarized. Appropriateness for use is the domain of the treating physician. Patient work up starts with pre-treatment imaging. First, a mapping study using Technetium-99m (Tc-99m ) is carried out to quantify the lung shunt fraction (LSF) and to characterize the vascular supply of the liver. An MRI, CT, or a PET-CT scan is used to obtain information on the tumor burden. The tumor volume, LSF, tumor histology, and other pertinent patient characteristics are used to decide the type and quantity of 90 Y to be ordered. On the day of treatment, the appropriate dose is assayed using a dose calibrator with a calibration traceable to a national standard. In the treatment suite, the care team led by an interventional radiologist delivers the dose using real-time image guidance. The treatment suite is posted as a radioactive area during the procedure and staff wear radiation dosimeters. The treatment room, patient, and staff are surveyed post-procedure. The dose delivered to the patient is determined from the ratio of pre-treatment and residual waste exposure rate measurements. Establishing such a treatment modality is a major undertaking requiring an institutional radioactive materials license amendment complying with appropriate federal and state radiation regulations and appropriate staff training commensurate with their respective role and function in the planning and delivery of the procedure. Training, documentation, and areas for potential failure modes are identified and guidance is provided to ameliorate them.
Collapse
Affiliation(s)
| | | | - Nadine Abi‐Jaoudeh
- Department of Radiological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Diane Alvarez
- Baptist HospitalMiami Cancer InstituteMiamiFloridaUSA
| | - Ahmet S. Ayan
- Department of Radiation OncologyOhio State UniversityColumbusOhioUSA
| | - Erli Chen
- Department of Radiation OncologyCheshire Medical CenterKeeneNew HampshireUSA
| | - Michael D. Chuong
- Department of Radiation OncologyMiami Cancer InstituteMiamiFloridaUSA
| | - William A. Dezarn
- Department of Radiation OncologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | | | - Robert F. Hobbs
- Department of Radiation OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mary Ellen Jafari
- Diagnostic Physics, Atlantic Health SystemMorristown Medical CenterMorristownNew JerseyUSA
| | - S. Peter Kim
- Medical Physics UnitMcGill UniversityMontrealCanada
| | - Nichole M. Maughan
- Department of Radiation OncologyWashington University in St. LouisSaint LouisMissouriUSA
| | - Andrew M. Polemi
- Department of RadiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | |
Collapse
|
5
|
Dieudonné A, Becker S, Soares M, Hollenbeck C, De Goltstein MC, Vera P, Santus R. Biological efficacy of simulated radiolabeled Lipiodol® ultra-fluid and microspheres for various beta emitters: study based on VX2 tumors. EJNMMI Res 2023; 13:101. [PMID: 37995042 PMCID: PMC10667182 DOI: 10.1186/s13550-023-01051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Radioembolization is one therapeutic option for the treatment of locally early-stage hepatocellular carcinoma. The aim of this study was to evaluate the distribution of Lipiodol® ultra-fluid and microspheres and to simulate their effectiveness with different beta emitters (90Y, 188Re, 32P, 166Ho, 131I, and 177Lu) on VX2 tumors implanted in the liver of 30 New Zealand rabbits. RESULTS Twenty-three out of 30 rabbits had exploitable data: 14 in the group that received Lipiodol® ultra-fluid (group L), 6 in the group that received microspheres (group M), and 3 in the control group (group C). The histologic analysis showed that the Lipiodol® ultra-fluid distributes homogeneously in the tumor up to 12 days after injection. The X-ray μCT images showed that Lipiodol® ultra-fluid has a more distal penetration in the tumor than microspheres. The entropy (disorder of the system) in the L group was significantly higher than in the M group (4.06 vs 2.67, p = 0.01). Equivalent uniform biological effective doses (EUBED) for a tumor-absorbed dose of 100 Gy were greater in the L group but without statistical significance except for 177Lu (p = 0.03). The radionuclides ranking by EUBED (from high to low) was 90Y, 188Re, 32P, 166Ho, 131I, and 177Lu. CONCLUSIONS This study showed a higher ability of Lipiodol® ultra-fluid to penetrate the tumor that translated into a higher EUBED. This study confirms 90Y as a good candidate for radioembolization, although 32P, 166Ho, and 188Re can achieve similar results.
Collapse
Affiliation(s)
- Arnaud Dieudonné
- Nuclear Medicine Department, Henri Becquerel Cancer Center, 76000, Rouen, France.
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France.
| | - Stéphanie Becker
- Nuclear Medicine Department, Henri Becquerel Cancer Center, 76000, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Miguel Soares
- Research and Development Division, Laboratoire Guerbet, Aulnay-Sous-Bois, France
| | - Claire Hollenbeck
- Research and Development Division, Laboratoire Guerbet, Aulnay-Sous-Bois, France
| | | | - Pierre Vera
- Nuclear Medicine Department, Henri Becquerel Cancer Center, 76000, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Robin Santus
- Research and Development Division, Laboratoire Guerbet, Aulnay-Sous-Bois, France
| |
Collapse
|
6
|
Dieudonné A, Sanchez-Garcia M, Bando-Delaunay A, Lebtahi R. Concepts and methods for the dosimetry of radioembolisation of the liver with Y-90-loaded microspheres. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:998793. [PMID: 39390993 PMCID: PMC11464973 DOI: 10.3389/fnume.2022.998793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 10/12/2024]
Abstract
This article aims at presenting in a didactic way, dosimetry concepts and methods that are relevant for radio-embolization of the liver with 90Y-microspheres. The application of the medical internal radiation dose formalism to radio-embolization is introduced. This formalism enables a simplified dosimetry, where the absorbed dose in a given tissue depends on only its mass and initial activity. This is applied in the single-compartment method, partition model, for the liver, tumour and lung dosimetry, and multi-compartment method, allowing identification of multiple tumours. Voxel-based dosimetry approaches are also discussed. This allows taking into account the non-uniform uptake within a compartment, which translates into a non-uniform dose distribution, represented as a dose-volume histogram. For this purpose, dose-kernel convolution allows propagating the energy deposition around voxel-sources in a computationally efficient manner. Alternatively, local-energy deposition is preferable when the spatial resolution is comparable or larger than the beta-particle path. Statistical tools may be relevant in establishing dose-effect relationships in a given population. These include tools such as the logistic regression or receiver operator characteristic analysis. Examples are given for illustration purpose. Moreover, tumour control probability modelling can be assessed through the linear-quadratic model of Lea and Catcheside and its counterpart, the normal-tissue complication probability model of Lyman, which is suitable to the parallel structure of the liver. The selectivity of microsphere administration allows tissue sparing, which can be considered with the concept of equivalent uniform dose, for which examples are also given. The implication of microscopic deposition of microspheres is also illustrated through a liver toxicity model, even though it is not clinically validated. Finally, we propose a reflection around the concept of therapeutic index (TI), which could help tailor treatment planning by determining the treatment safety through the evaluation of TI based on treatment-specific parameters.
Collapse
Affiliation(s)
- Arnaud Dieudonné
- Department of Nuclear Medicine, Beaujon Hospital, APHP, Nord, University of Paris Cité, Clichy, France
- Department of Nuclear Medicine, Henri Becquerel Center, Rouen, France
| | - Manuel Sanchez-Garcia
- Servicio de Radiofisica y Proteccion Radiologica, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurélie Bando-Delaunay
- Department of Nuclear Medicine, Beaujon Hospital, APHP, Nord, University of Paris Cité, Clichy, France
| | - Rachida Lebtahi
- Department of Nuclear Medicine, Beaujon Hospital, APHP, Nord, University of Paris Cité, Clichy, France
| |
Collapse
|
7
|
Kiess AP, Hobbs RF, Bednarz B, Knox SJ, Meredith R, Escorcia FE. ASTRO's Framework for Radiopharmaceutical Therapy Curriculum Development for Trainees. Int J Radiat Oncol Biol Phys 2022; 113:719-726. [PMID: 35367328 DOI: 10.1016/j.ijrobp.2022.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
In 2017, the American Society for Radiation Oncology (ASTRO) board of directors prioritized radiopharmaceutical therapy (RPT) as a leading area for new therapeutic development, and the ASTRO RPT workgroup was created. Herein, the workgroup has developed a framework for RPT curriculum development upon which education leaders can build to integrate this modality into radiation oncology resident education. Through this effort, the workgroup aims to provide a guide to ensure robust training in an emerging therapeutic area within the context of existing radiation oncology training in radiation biology, medical physics, and clinical radiation oncology. The framework first determines the core RPT knowledge required to select patients, prescribe, safely administer, and manage related adverse events. Then, it defines the most important topics for preparing residents for clinical RPT planning and delivery. This framework is designed as a tool to supplement the current training that exists for radiation oncology residents. The final document was approved by the ASTRO board of directors in the fall of 2021.
Collapse
Affiliation(s)
- Ana P Kiess
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland.
| | - Robert F Hobbs
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Bryan Bednarz
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Ruby Meredith
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Freddy E Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
d'Abadie P, Walrand S, Hesse M, Borbath I, Lhommel R, Jamar F. TCP post-radioembolization and TCP post-EBRT in HCC are similar and can be predicted using the in vitro radiosensitivity. EJNMMI Res 2022; 12:40. [PMID: 35802307 PMCID: PMC9270555 DOI: 10.1186/s13550-022-00911-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tumor equivalent uniform dose (EUD) is proposed as a predictor of patient outcome after liver radioembolization (RE) of hepatocellular carcinoma (HCC) and can be evaluated with 90Y-TOF-PET. The aim is to evaluate the correlation between PET-based tumors EUD and the clinical response evaluated with dual molecular tracer (11C-acetate and 18F-FDG) PET/CT post-RE. Methods 34 HCC tumors in 22 patients were prospectively evaluated. The metabolic response was characterized by the total lesion metabolism variation (ΔTLM) between baseline and follow-up. This response allowed to compute a tumor control probability (TCP) as a function of the tumor EUD. Results The absorbed dose response correlation was highly significant (R = 0.72, P < 0.001). With an absorbed dose threshold of 40 Gy, the metabolic response was strongly different in both groups (median response 35% versus 100%, P < 0.001). Post-RE TCP as a function of the EUD was very similar to that observed in external beam radiation therapy (EBRT), with TCP values equal to 0.5 and 0.95 for a EUD of 51 Gy and 100 Gy, respectively. The TCP was perfectly predicted by the Poisson model assuming an inter tumor radiosensitivity variation of 30% around the HCC cell in vitro value. Conclusions EUD-based 90Y TOF-PET/CT predicts the metabolic response post-RE in HCC assessed using dual molecular PET tracers and provides a similar TCP curve to that observed in EBRT. In vivo and in vitro HCC radiosensitivities are similar. Both TCPs show that a EUD of 100 Gy is needed to control HCC for the three devices (resin spheres, glass spheres, EBRT). Observed absorbed doses achieving this 100 Gy-EUD ranged from 190 to 1800 Gy! Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00911-0.
Collapse
Affiliation(s)
- Philippe d'Abadie
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium.
| | - Stephan Walrand
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium
| | - Michel Hesse
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium
| | - Ivan Borbath
- Department of Medical Oncology, CIiniques Universitaires Saint Luc, Institut Roi Albert II, Brussels, Belgium
| | - Renaud Lhommel
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium
| | - François Jamar
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Institut Roi Albert II, 10, avenue Hippocrate, 1200, Brussels, Belgium
| |
Collapse
|
9
|
Maxwell AWP, Mendoza HG, Sellitti MJ, Camacho JC, Deipolyi AR, Ziv E, Sofocleous CT, Yarmohammadi H, Maybody M, Humm JL, Schwartz J, Juluru K, Dunphy MP, Boas FE. Optimizing 90Y Particle Density Improves Outcomes After Radioembolization. Cardiovasc Intervent Radiol 2022; 45:958-969. [PMID: 35459960 PMCID: PMC10103908 DOI: 10.1007/s00270-022-03139-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/28/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE To determine how particle density affects dose distribution and outcomes after lobar radioembolization. METHODS Matched pairs of patients, treated with glass versus resin microspheres, were selected by propensity score matching (114 patients), in this single-institution retrospective study. For each patient, tumor and liver particle density (particles/cm3) and dose (Gy) were determined. Tumor-to-normal ratio was measured on both 99mTc-MAA SPECT/CT and post-90Y bremsstrahlung SPECT/CT. Microdosimetry simulations were used to calculate first percentile dose, which is the dose in the cold spots between microspheres. Local progression-free survival (LPFS) and overall survival were analyzed. RESULTS As more particles were delivered, doses on 90Y SPECT/CT became more uniform throughout the treatment volume: tumor and liver doses became more similar (p = 0.04), and microscopic cold spots between particles disappeared. For hypervascular tumors (tumor-to-normal ratio ≥ 2.6 on MAA scan), delivering fewer particles (< 6000 particles/cm3 treatment volume) was associated with better LPFS (p = 0.03). For less vascular tumors (tumor-to-normal ratio < 2.6), delivering more particles (≥ 6000 particles/cm3) was associated with better LPFS (p = 0.02). In matched pairs of patients, using the optimal particle density resulted in improved overall survival (11.5 vs. 6.8 months, p = 0.047), compared to using suboptimal particle density. Microdosimetry resulted in better predictions of LPFS (p = 0.03), and overall survival (p = 0.02), compared to conventional dosimetry. CONCLUSION The number of particles delivered can be chosen to maximize the tumor dose and minimize the liver dose, based on tumor vascularity. Optimizing the particle density resulted in improved LPFS and overall survival.
Collapse
Affiliation(s)
- Aaron W P Maxwell
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Humberto G Mendoza
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew J Sellitti
- Radiology Informatics, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan C Camacho
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy R Deipolyi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Etay Ziv
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Constantinos T Sofocleous
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hooman Yarmohammadi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Majid Maybody
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jazmin Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Krishna Juluru
- Body Imaging Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark P Dunphy
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - F Edward Boas
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, City of Hope Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
10
|
Spatial density and tumor dosimetry are important in radiation segmentectomy with 90Y glass microspheres. Eur J Nucl Med Mol Imaging 2022; 49:3607-3609. [PMID: 35543732 DOI: 10.1007/s00259-022-05819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Chiesa C, Sjogreen-Gleisner K, Walrand S, Strigari L, Flux G, Gear J, Stokke C, Gabina PM, Bernhardt P, Konijnenberg M. EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys 2021; 8:77. [PMID: 34767102 PMCID: PMC8589932 DOI: 10.1186/s40658-021-00394-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient-relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments.Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available.The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Unit, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Stephan Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Lidia Strigari
- Medical Physics Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital, Barakaldo, Spain
| | - Peter Bernhardt
- Department of Radiation Physics, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Hesse M, d'Abadie P, Lhommel R, Jamar F, Walrand S. Yttrium-90 TOF-PET-Based EUD Predicts Response Post Liver Radioembolizations Using Recommended Manufacturer FDG Reconstruction Parameters. Front Oncol 2021; 11:592529. [PMID: 34676157 PMCID: PMC8523947 DOI: 10.3389/fonc.2021.592529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Explaining why 90Y TOF-PET based equivalent uniform dose (EUD) using recommended manufacturer FDG reconstruction parameters has been shown to predict response. Methods The hot rods insert of a Jaszczak deluxe phantom was partially filled with a 2.65 GBq 90Y - 300ml DTPA water solution resulting in a 100 Gy mean absorbed dose in the 6 sectors. A two bed 20min/position acquisition was performed on a 550ps- and on a 320ps- TOF-PET/CT and reconstructed with recommended manufacturer FDG reconstruction parameters, without and with additional filtering. The whole procedure was repeated on both PET after adding 300ml of water (50Gy setup). The phantom was acquired again after decay by a factor of 10 (5Gy setup), but with 200min per bed position. For comparison, the phantom was also acquired with 18F activity corresponding to a clinical FDG whole body acquisition. Results The 100Gy-setup provided a hot rod sectors image almost as good as the 18F phantom. However, despite acquisition time compensation, the 5Gy-setup provides much lower quality imaging. TOF-PET based sectors EUDs for the three large rod sectors agreed with the actual EUDs computed with a radiosensitivity of 0.021Gy-1 well in the range observed in external beam radiotherapy (EBRT), i.e. 0.01-0.04Gy-1. This agreement explains the reunification of the dose-response relationships of the glass and resin spheres in HCC using the TOF-PET based EUD. Additional filtering reduced the EUDs agreement quality. Conclusions Recommended manufacturer FDG reconstruction parameters are suitable in TOF-PET post 90Y liver radioembolization for accurate tumour EUD computation. The present results rule out the use of low specific activity phantom studies to optimize reconstruction parameters.
Collapse
Affiliation(s)
- Michel Hesse
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Philipe d'Abadie
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Renaud Lhommel
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Francois Jamar
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Stephan Walrand
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
13
|
De la Garza-Ramos C, Toskich BB. Radioembolization for the Treatment of Hepatocellular Carcinoma: The Road to Personalized Dosimetry and Ablative Practice. Semin Intervent Radiol 2021; 38:466-471. [PMID: 34629715 DOI: 10.1055/s-0041-1735571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radioembolization dosimetry for the treatment of hepatocellular carcinoma has evolved alongside our understanding of best practice for this therapy. At the core of advances in dosimetry are personalized and ablative applications of radioembolization, which have generated paradigm shifts in both safety and efficacy. This review provides a summary of fundamental radioembolization dosimetry concepts and narrates how our approach to treating patients has shifted from conventional to tailored and definitive therapy.
Collapse
Affiliation(s)
| | - Beau B Toskich
- Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Florida
| |
Collapse
|
14
|
Aerts A, Eberlein U, Holm S, Hustinx R, Konijnenberg M, Strigari L, van Leeuwen FWB, Glatting G, Lassmann M. EANM position paper on the role of radiobiology in nuclear medicine. Eur J Nucl Med Mol Imaging 2021; 48:3365-3377. [PMID: 33912987 PMCID: PMC8440244 DOI: 10.1007/s00259-021-05345-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
Abstract
With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.
Collapse
Affiliation(s)
- An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Sören Holm
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, GIGA-CRC in vivo Imaging, University of Liège, Liège, Belgium
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lidia Strigari
- Medical Physics Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Accurate non-tumoral 99mTc-MAA absorbed dose prediction to plan optimized activities in liver radioembolization using resin microspheres. Phys Med 2021; 89:250-257. [PMID: 34438353 DOI: 10.1016/j.ejmp.2021.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
AIM The manufacturers' recommended methods to calculate delivered activities in liver radioembolization are simplistic and only slightly personalized. Activity planning could also be based on a 99mTc-macroaggregated albumin SPECT/CT (MAA) using the partition model but its accuracy is controversial. This study evaluates the dose parameters in the normal liver and in the tumor compartments using MAA SPECT/CT (pre-therapeutic imaging) and 90Y TOF-PET/CT (post-therapy imaging). Finally, we propose a prescription of the activity as a function of the normal liver MAA distribution. METHOD 66 procedures of RE (with resin microspheres) corresponding to 171 lesions were analyzed. Tumor to normal targeted liver uptake (T/NTL), tumor absorbed dose (TD) and whole normal liver absorbed (WNLD) were assessed with MAA and 90Y imaging. Secondly, activities were recalculated using the MAA distribution in the normal liver compartment to reach the maximal tolerable liver dose. These Activities were compared to activities defined with the BSA method. RESULTS Compared to 90Y imaging, our study demonstrated an accurate estimation of the WNLD using MAA imaging (Pearson's R = 0.97, p < 0.001). On the contrary, significant variations were found for TD (R = 0.65, p < 0.001). The MAA T/NTL ratio has a 85% positive predictive value in identifying patients who will get a 90Y T/NTL ratio above 1.5. Moreover, activities calculated using the MAA distribution in the normal liver compartment were significantly higher to activities defined with the BSA method. CONCLUSION Whole normal liver absorbed doses are accurately predicted with MAA imaging and could be used to optimize the activity planning.
Collapse
|
16
|
d'Abadie P, Walrand S, Hesse M, Annet L, Borbath I, Van den Eynde M, Lhommel R, Jamar F. Prediction of tumor response and patient outcome after radioembolization of hepatocellular carcinoma using 90Y-PET-computed tomography dosimetry. Nucl Med Commun 2021; 42:747-754. [PMID: 33741864 DOI: 10.1097/mnm.0000000000001395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM 90Y-radioembolization using glass or resin microspheres is increasingly used for the treatment of hepatocellular carcinoma (HCC). The aim of this retrospective study is to determine the prognostic relevance of dosimetric parameters defined with 90Y-PET-CT obtained immediately after radioembolization. METHODS Forty-five HCC patients, mostly with multiple lesions, were treated by radioembolization between 2011 and 2017. After treatment, all underwent a 90Y PET-CT with time of flight reconstruction (90Y-TOF-PET-CT). Tumor absorbed dose and cumulative tumor dose-volume histogram were calculated using a dose point Kernel convolution algorithm. The radiological tumor response was assessed using modified (m)-RECIST criteria. Progression-free-survival (PFS) and overall survival (OS) were analyzed using the Kaplan-Meier method and Cox regression analysis. RESULTS Twenty-six patients were treated with glass microspheres (73 lesions) and nineteen with resin microspheres (60 lesions). Thresholds of 118 and 61 Gy for glass and resin microspheres respectively correlate well with radiological response with a positive predictive value (PPV) of 98 and 80% and discriminate patient outcome with regard to PFS (P = 0.03 and 0.005) and OS (P = 0.003 and 0.007). Using dose volume histogram, a minimal absorbed dose of 40 Gy in 66% of the tumor volume (defined as D66) was highly predictive of radiological response (PPV = 94%), PFS (P < 0.001) and OS (P = 0. 008), for either device. CONCLUSION Dosimetric parameters obtained using 90Y-PET-CT are predictive of tumor response, PFS and OS. In clinical practice, a systematic dosimetric evaluation using 90Y PET should be implemented to help predicting patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Borbath
- Gastroenterology and Oncology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Marc Van den Eynde
- Gastroenterology and Oncology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
17
|
d’Abadie P, Hesse M, Louppe A, Lhommel R, Walrand S, Jamar F. Microspheres Used in Liver Radioembolization: From Conception to Clinical Effects. Molecules 2021; 26:3966. [PMID: 34209590 PMCID: PMC8271370 DOI: 10.3390/molecules26133966] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/31/2023] Open
Abstract
Inert microspheres, labeled with several radionuclides, have been developed during the last two decades for the intra-arterial treatment of liver tumors, generally called Selective Intrahepatic radiotherapy (SIRT). The aim is to embolize microspheres into the hepatic capillaries, accessible through the hepatic artery, to deliver high levels of local radiation to primary (such as hepatocarcinoma, HCC) or secondary (metastases from several primary cancers, e.g., colorectal, melanoma, neuro-endocrine tumors) liver tumors. Several types of microspheres were designed as medical devices, using different vehicles (glass, resin, poly-lactic acid) and labeled with different radionuclides, 90Y and 166Ho. The relationship between the microspheres' properties and the internal dosimetry parameters have been well studied over the last decade. This includes data derived from the clinics, but also computational data with various millimetric dosimetry and radiobiology models. The main purpose of this paper is to define the characteristics of these radiolabeled microspheres and explain their association with the microsphere distribution in the tissues and with the clinical efficacy and toxicity. This review focuses on avenues to follow in the future to optimize such particle therapy and benefit to patients.
Collapse
Affiliation(s)
- Philippe d’Abadie
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.H.); (A.L.); (R.L.); (S.W.); (F.J.)
| | | | | | | | | | | |
Collapse
|
18
|
Van BJ, Dewaraja YK, Sangogo ML, Mikell JK. Y-90 SIRT: evaluation of TCP variation across dosimetric models. EJNMMI Phys 2021; 8:45. [PMID: 34114115 PMCID: PMC8192668 DOI: 10.1186/s40658-021-00391-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Much progress has been made in implementing selective internal radiation therapy (SIRT) as a viable treatment option for hepatic malignancies. However, there is still much need for improved options for calculating the amount of activity to be administered. To make advances towards this goal, this study examines the relationship between predicted biological outcomes of liver tumors via tumor control probabilities (TCP) and parenchyma via normal tissue complication probabilities (NTCP) given variations in absorbed dose prescription methodologies. Methods Thirty-nine glass microsphere treatments in 35 patients with hepatocellular carcinoma or metastatic liver disease were analyzed using 99mTc-MAA SPECT/CT and 90Y PET/CT scans. Predicted biological outcomes corresponding to the single compartment (standard) model and multi-compartment (partition) dosimetry model were compared using our previously derived TCP dose-response curves over a range of 80–150 Gy prescribed absorbed dose to the perfused volume, recommended in the package insert for glass microspheres. Retrospective planning dosimetry was performed on the MAA SPECT/CT; changes from the planned infused activity due to selection of absorbed dose level and dosimetry model (standard or partition) were used to scale absorbed doses reported from 90Y PET/CT including liver parenchyma and lesions (N = 120) > 2 ml. A parameterized charting system was developed across all potential prescription options to enable a clear relationship between standard prescription vs. the partition model-based prescription. Using a previously proposed NTCP model, the change in prescribed dose from a standard model prescription of 120 Gy to the perfused volume to a 15% NTCP prescription to the normal liver was explored. Results Average TCP predictions for the partition model compared with the standard model varied from a 13% decrease to a 32% increase when the prescribed dose was varied across the range of 80–150 Gy. In the parametrized chart comparing absorbed dose prescription ranges across the standard model and partition models, a line of equivalent absorbed dose to a tumor was identified. TCP predictions on a per lesion basis varied between a 26% decrease and a 81% increase for the most commonly chosen prescription options when comparing the partition model with the standard model. NTCP model was only applicable to a subset of patients because of the small volume fraction of the liver that was targeted in most cases. Conclusion Our retrospective analysis of patient imaging data shows that the choice of prescribed dose and which model to prescribe potentially contribute to a wide variation in average tumor efficacy. Biological response data should be included as one factor when looking to improve patient care in the clinic. The use of parameterized charting, such as presented here, will help direct physicians when transitioning to newer prescription methods. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00391-6.
Collapse
Affiliation(s)
- Benjamin J Van
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mamadou L Sangogo
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Justin K Mikell
- Department of Radiation Oncology, University of Michigan, Ann Arbor, 48109, MI, USA
| |
Collapse
|
19
|
Pollock RF, Brennan VK, Shergill S, Colaone F. A systematic literature review and network meta-analysis of first-line treatments for unresectable hepatocellular carcinoma based on data from randomized controlled trials. Expert Rev Anticancer Ther 2021; 21:341-349. [PMID: 33131346 DOI: 10.1080/14737140.2021.1842204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. First-line treatment options for unresectable HCC include sorafenib, lenvatinib, selective internal radiation therapy (SIRT), and transarterial chemoembolization (TACE). The present study reviewed randomized controlled trials (RCTs) of first-line therapies for unresectable HCC in TACE-ineligible patients. RESEARCH DESIGN AND METHODS A systematic literature review (SLR) was conducted to identify RCTs of first-line treatments for TACE-ineligible patients with unresectable HCC. Data on overall survival (OS) and progression-free survival were extracted and a contrast-based Bayesian network meta-analysis (NMA) was conducted using Markov Chain Monte Carlo techniques. RESULTS The SLR identified three RCTs: two comparing Y-90 resin microspheres with sorafenib, and one comparing sorafenib with lenvatinib. No RCTs were identified comparing other SIRT technologies with any other approved first-line HCC therapies. The NMA showed no significant OS differences between Y-90 resin microspheres and sorafenib (hazard ratio [HR] 0.92, 95% credible interval [CrI]: 0.79-1.08) or lenvatinib (HR: 0.88, 95% CrI: 0.63-1.22). CONCLUSIONS An SLR and NMA showed no significant differences between sorafenib, lenvatinib, and Y-90 resin microspheres in treating unresectable HCC. RCT evidence was not available for any other SIRT technologies and an evaluation of their relative efficacy was therefore not possible.
Collapse
Affiliation(s)
- Richard F Pollock
- Health Economics and Outcomes Research, Covalence Research Ltd, London, UK
| | - Victoria K Brennan
- Health Economics, Pricing, Reimbursement and Market Access, Sirtex Medical United Kingdom Ltd, London, UK
| | - Suki Shergill
- Health Economics, Pricing, Reimbursement and Market Access, Sirtex Medical United Kingdom Ltd, London, UK
| | - Fabien Colaone
- Health Economics, Pricing, Reimbursement and Market Access, Sirtex Medical United Kingdom Ltd, London, UK
| |
Collapse
|
20
|
Pasciak AS, Manupipatpong S, Hui FK, Gainsburg L, Krimins R, Zink MC, Brayton CF, Morris M, Sage J, Donahue DR, Dreher MR, Kraitchman DL, Weiss CR. Yttrium-90 radioembolization as a possible new treatment for brain cancer: proof of concept and safety analysis in a canine model. EJNMMI Res 2020; 10:96. [PMID: 32804262 PMCID: PMC7431501 DOI: 10.1186/s13550-020-00679-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose To evaluate the safety, feasibility, and preliminary efficacy of yttrium-90 (90Y) radioembolization (RE) as a minimally invasive treatment in a canine model with presumed spontaneous brain cancers. Materials Three healthy research dogs (R1–R3) and five patient dogs with spontaneous intra-axial brain masses (P1–P5) underwent cerebral artery RE with 90Y glass microspheres (TheraSphere). 90Y-RE was performed on research dogs from the unilateral internal carotid artery (ICA), middle cerebral artery (MCA), and posterior cerebral artery (PCA) while animals with brain masses were treated from the ICA. Post-treatment 90Y PET/CT was performed along with serial neurological exams by a veterinary neurologist. One month after treatment, research dogs were euthanized and the brains were extracted and sent for microdosimetric and histopathologic analyses. Patient dogs received post-treatment MRI at 1-, 3-, and 6-month intervals with long-term veterinary follow-up. Results The average absorbed dose to treated tissue in R1–R3 was 14.0, 30.9, and 73.2 Gy, respectively, with maximum doses exceeding 1000 Gy. One month after treatment, research dog pathologic analysis revealed no evidence of cortical atrophy and rare foci consistent with chronic infarcts, e.g., < 2-mm diameter. Absorbed doses to masses in P1–P5 were 45.5, 57.6, 58.1, 45.4, and 64.1 Gy while the dose to uninvolved brain tissue was 15.4, 27.6, 19.2, 16.7, and 33.3 G, respectively. Among both research and patient animals, 6 developed acute neurologic deficits following treatment. However, in all surviving dogs, the deficits were transient resolving between 7 and 33 days post-therapy. At 1 month post-therapy, patient animals showed a 24–94% reduction in mass volume with partial response in P1, P3, and P4 at 6 months post-treatment. While P2 initially showed a response, by 5 months, the mass had advanced beyond pre-treatment size, and the dog was euthanized. Conclusion This proof of concept demonstrates the technical feasibility and safety of 90Y-RE in dogs, while preliminary, initial data on the efficacy of 90Y-RE as a potential treatment for brain cancer is encouraging.
Collapse
Affiliation(s)
- Alexander S Pasciak
- School of Medicine, The Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA.
| | - Sasicha Manupipatpong
- School of Medicine, The Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA
| | - Ferdinand K Hui
- Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Larry Gainsburg
- Mid-Atlantic Veterinary Neurology and Neurosurgery, Baltimore, MD, USA
| | - Rebecca Krimins
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Express Radiology Research Lab, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Veterinary Clinical Trials Network, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University, Baltimore, MD, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University, Baltimore, MD, USA
| | - Meaghan Morris
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Danielle R Donahue
- Mouse Imaging Facility, National Institutes of Health, Bethesda, MD, USA
| | - Matthew R Dreher
- Biocompatibles UK Ltd., a BTG International group company, Farnham, Surrey, UK
| | - Dara L Kraitchman
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Center for Image-Guided Animal Therapy, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clifford R Weiss
- Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department Biomedical Engineering, The Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
21
|
Mikell JK, Dewaraja YK, Owen D. Transarterial Radioembolization for Hepatocellular Carcinoma and Hepatic Metastases: Clinical Aspects and Dosimetry Models. Semin Radiat Oncol 2020; 30:68-76. [PMID: 31727302 DOI: 10.1016/j.semradonc.2019.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transarterial radioembolization (TARE) with Yttrium-90 (90Y) microspheres is a liver-directed therapy for primary and metastatic disease. This manuscript provides a review of the clinical literature on TARE indications and efficacy with overviews of patient-selection and toxicity. Current dosimetry models used in practice are safe, relatively simple, and easy for clinicians to use. Planning currently relies on the imperfect surrogate, 99mTc macroaggregated albumin. Post-therapy quantitative imaging (90Y SPECT/CT or 90Y PET/CT) of microspheres can be used to calculate the macroscopic in vivo absorbed dose distribution. Similar to the evolution of other brachytherapy dose calculations, TARE is moving toward more patient-specific dosimetry that includes calculating and reporting nonuniform dose distributions throughout tumors and normal uninvolved liver.
Collapse
Affiliation(s)
- Justin K Mikell
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, MI.
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan Medical Center, Ann Arbor, MI
| | - Dawn Owen
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, MI
| |
Collapse
|
22
|
A guide to 90Y radioembolization and its dosimetry. Phys Med 2019; 68:132-145. [DOI: 10.1016/j.ejmp.2019.09.236] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023] Open
|
23
|
The number of microspheres in Y90 radioembolization directly affects normal tissue radiation exposure. Eur J Nucl Med Mol Imaging 2019; 47:816-827. [PMID: 31741021 DOI: 10.1007/s00259-019-04588-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE In Y90 radioembolization, the number of microspheres infused varies by more than a factor of 20 over the shelf-life of the glass radioembolization device. We investigated the effect of the number of Y90 microspheres on normal liver tissue. METHOD Healthy pigs received lobar radioembolization with glass Y90 microspheres at 4, 8, 12, and 16 days post-calibration, representing a > 20× range in the number of microspheres deposited per milliliter in tissue. Animals were survived for 1-month post-treatment and the livers were explanted and scanned on a micro CT system to fully characterize the microscopic distribution of individual microspheres. A complete 3D microdosimetric evaluation of each liver was performed with a spatially correlated analysis of histopathologic effect. RESULTS Through whole-lobe microscopic identification of each microsphere, a consistent number of microspheres per sphere cluster was found at 4, 8, and 12 days postcalibration, despite an 8-fold increase in total microspheres infused from days 4 to 12. The additional microspheres instead resulted in more clusters formed and, therefore, a more homogeneous microscopic absorbed dose. The increased absorbed-dose homogeneity resulted in a greater volume fraction of the liver receiving a potentially toxic absorbed dose based on radiobiologic models. Histopathologic findings in the animals support a possible increase in normal liver toxicity in later treatments with more spheres (i.e., ≥ day 12) compared to early treatments with less spheres (i.e., ≤ day 8). CONCLUSION The microdosimetric evidence presented supports a recommendation of caution when treating large volumes (e.g., right lobe) using glass 90Y microspheres at more than 8 days post-calibration, i.e., after "2nd week" Monday. The favorable normal tissue microscopic distribution and associated low toxicity of first week therapies may encourage opportunities for dose escalation with glass microspheres and could also be considered for patients with decreased hepatic reserve.
Collapse
|
24
|
Crookston NR, Pasciak AS, Abiola G, Donahue D, Weiss CR, Frey EC. Verification of a method to detect glass microspheres via micro-CT. Med Phys 2019; 46:5623-5636. [PMID: 31621918 DOI: 10.1002/mp.13874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The ability to determine the microscopic distribution of glass microspheres in 90 Y radioembolization has important applications in post-treatment microdosimetry and cluster analysis. Current methods are time-intensive and labor-intensive and thus are typically only applied to small samples. MATERIALS AND METHODS A high-resolution micro-CT image with a voxel size of 8.74 µm was acquired of phantoms containing ~25 µm-diameter glass microspheres embedded in tissue-equivalent materials that were optically transparent, which allowed true microsphere locations to be determined using transmission light microscopy. A 3-stage algorithm was developed to estimate the number and locations of microspheres in tissue regions. The stages are thresholding the CT image and discarding regions with insufficient voxels, estimating the number of microspheres in each region using the values of the detected and neighboring region voxels and estimating locations for each microsphere using the outputs of the previous two stages. Two different methods for estimating the number of microspheres in each region were derived, as were five methods for localizing microspheres. Metrics for each stage were computed, and the mean absolute error (MAE) between the dose to 72 µm voxels of the true and estimated dose maps created from the microsphere locations was used as the figure of merit for overall algorithm performance. Microsphere locations identified in the optical micrograph were used as the gold standard for the metrics of all stages. The method's utility was then demonstrated using a specimen from a human neuroendocrine tumor (NET) treated with glass 90 Y microspheres. RESULTS The stage detecting regions containing microspheres found 100% of microspheres inside regions. The number of incorrectly detected regions without microspheres was 1.5% of the total number of regions. In stage 2, with these parameters, nearly 94% of the actual number of spheres in each region was correctly counted, and only 5% of the estimated sphere quantities in each region were false positives. The MAE between the true dose maps and dose maps estimated using the full algorithm with optimal parameter and method choices was 4.2%. A total of 5,713 glass microspheres were identified as being distributed heterogeneously in the NET specimen with a maximum tumor dose of >2500 Gy and 46% of the specimen receiving <20 Gy. CONCLUSIONS This work developed and evaluated a method to detect and estimate the three-dimensional locations of glass microspheres in whole tissue samples that require less manual effort than traditional methods. This method could be used to gain important insights into the heterogeneity of microsphere distributions that would be useful for improving radioembolization treatment planning.
Collapse
Affiliation(s)
- Nathan R Crookston
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Godwin Abiola
- Johns Hopkins Medical Institution, Baltimore, MD, USA
| | | | | | - Eric C Frey
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Medical Institution, Baltimore, MD, USA
| |
Collapse
|
25
|
Toskich BB, Liu DM. Y90 Radioembolization Dosimetry: Concepts for the Interventional Radiologist. Tech Vasc Interv Radiol 2019; 22:100-111. [PMID: 31079706 DOI: 10.1053/j.tvir.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transarterial radioembolization (TARE) with beta particle emitting microspheres via Yttrium-90 decay has become a fundamental component of the contemporary Interventional Oncology practice. TARE continues to advance as a result of increased utilization, clinical study, technological improvements, and evolving applications. To maximize TARE safety and efficacy, a core understanding of dosimetry is essential. The intent of this overview is to provide the reader with a general survey of radiation physics and biology, device differentiation, patient selection, anatomic assessment, activity administration models, and procedural techniques involved with TARE dosimetry.
Collapse
Affiliation(s)
| | - David M Liu
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Crookston NR, Fung GSK, Frey EC. Development of a Customizable Hepatic Arterial Tree and Particle Transport Model for Use in Treatment Planning. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:31-37. [PMID: 33829118 PMCID: PMC8023303 DOI: 10.1109/trpms.2018.2842463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optimal treatment planning for radioembolization of hepatic cancers produces sufficient dose to tumors for control and dose to normal liver parenchyma that is below the threshold for toxicity. The non-uniform distribution of particles in liver microanatomy complicates the planning process as different functional regions receive different doses. Having realistic and patient-specific models of the arterial tree and microsphere trapping would be useful for developing more optimal treatment plans. We propose a macrocell-based growth method to generate models of the hepatic arterial tree from the proper hepatic artery to the terminal arterioles supplying the capillaries in the parenchyma. We show how these trees can be adapted to match patient values of pressure, flow, and vessel diameters while still conforming to laws controlling vessel bifurcation, changes in pressure, and blood flow. We also introduce a method to model particle transport within the tree that accounts for vessel and particle diameter distributions and show the non-uniform microsphere deposition pattern that results. Potential applications include investigating dose heterogeneity and microsphere deposition patterns.
Collapse
Affiliation(s)
| | - George S K Fung
- Department of Medical Imaging Physics, Johns Hopkins Medicine, Baltimore, MD 21287
| | - Eric C Frey
- Department of Medical Imaging Physics, Johns Hopkins Medicine, Baltimore, MD 21287
| |
Collapse
|
27
|
d'Abadie P, Hesse M, Jamar F, Lhommel R, Walrand S. 90Y TOF-PET based EUD reunifies patient survival prediction in resin and glass microspheres radioembolization of HCC tumours. Phys Med Biol 2018; 63:245010. [PMID: 30524029 DOI: 10.1088/1361-6560/aaf205] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clinical studies reported a twofold ratio between the efficacies per Gy of resin versus glass spheres. Our aim is to investigate whether this difference could result from the different degrees of heterogeneity in sphere distribution between the two medical devices. The 90Y TOF-PET based equivalent uniform doses (EUD) was used for this purpose. 58 consecutive HCC radioembolizations were retrospectively analyzed. Absorbed doses D and Jones-Hoban EUD in lesions were computed. Radioembolization efficacy was assessed using Kaplan-Meier survival curves. In order to match together the glass and resin spheres survival curves using a 40 Gy-threshold, an efficacy factor of 0.73 and 0.36 has to be applied on their absorbed dose, respectively. Using EUD, a nice matching between glass and resin survival curves was obtained with a better separation of the responding and not responding survival curves. The results clearly support the fact that the activity heterogeneity observed in 90Y TOF-PET post radioembolization does not only result from statistical noise, but also reflects the actual heterogeneity of the spheres distribution. Use of EUD reunifies the efficacy of the two medical devices.
Collapse
Affiliation(s)
- P d'Abadie
- Nuclear Medicine, Saint-Luc Hospital, Brussels, Belgium
| | | | | | | | | |
Collapse
|
28
|
Kretz D, Hesser J, Glatting G, Diehl S, Wenz F, He W, Zheng L. Modeling sphere dynamics in blood vessels for SIRT pre-planning - To fathom the potential and limitations. Z Med Phys 2018; 29:5-15. [PMID: 30049550 DOI: 10.1016/j.zemedi.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 11/26/2022]
Abstract
For selective internal radiation therapy (SIRT) the calculation of the 3D distribution of spheres based on individual blood flow properties is still an open and relevant research question. The purpose of this work is to develop and analyze a new treatment planning method for SIRT to calculate the absorbed dose distribution. For this intention, flow dynamics of the SIRT-spheres inside the blood vessels was simulated. The challenge is treatment planning solely using high-resolution imaging data available before treatment. The resolution required to reliably predict the sphere distribution and hence the dose was investigated. For this purpose, arteries of the liver were segmented from a contrast-enhanced angiographic CT. Due to the limited resolution of the given CT, smaller vessels were generated via a vessel model. A combined 1D/3D-flow simulation model was implemented to simulate the final 3D distribution of spheres and dose. Results were evaluated against experimental data from Y90-PET. Analysis showed that the resolution of the vessels within the angiographic CT of about 0.5mm should be improved to a limit of about 150μm to reach a reliable prediction.
Collapse
Affiliation(s)
- Dominik Kretz
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany.
| | - Jürgen Hesser
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany; Central Institute of Mental Health (ZI), Mannheim, Germany
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Steffen Diehl
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| | - Wanji He
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| | - Lei Zheng
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| |
Collapse
|
29
|
Impact of missing attenuation and scatter corrections on 99m
Tc-MAA SPECT 3D dosimetry for liver radioembolization using the patient relative calibration methodology: A retrospective investigation on clinical images. Med Phys 2018; 45:1684-1698. [DOI: 10.1002/mp.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/14/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
|
30
|
Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images. EJNMMI Phys 2018; 5:1. [PMID: 29302810 PMCID: PMC5754277 DOI: 10.1186/s40658-017-0201-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/07/2017] [Indexed: 02/05/2023] Open
Abstract
Background Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (1283 or 2563). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). Result The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 1283 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was clearly improved with MC-based OSEM reconstruction, e.g., the activity recovery was 88% for the largest sphere, while it was 66% for AC-OSEM and 79% for RRC-OSEM. Conclusion The GPU-based MC code generated an MC-based SPECT/CT reconstruction within a few minutes, and reconstructed patient images of 177Lu-DOTATATE treatments revealed clearly improved resolution and contrast.
Collapse
|
31
|
Willowson KP, Hayes AR, Chan DLH, Tapner M, Bernard EJ, Maher R, Pavlakis N, Clarke SJ, Bailey DL. Clinical and imaging-based prognostic factors in radioembolisation of liver metastases from colorectal cancer: a retrospective exploratory analysis. EJNMMI Res 2017; 7:46. [PMID: 28536968 PMCID: PMC5442040 DOI: 10.1186/s13550-017-0292-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background The aim of this study was to investigate the relationship between absorbed dose and response of colorectal cancer liver metastases treated with [90Y]-resin microspheres and to explore possible clinical and imaging derived prognostic factors. Methods FDG PET/CT was used to measure response of individual lesions to a measured absorbed dose, derived from post-treatment 90Y PET imaging. Predicted dose was also derived from planning [99mTc]-MAA SPECT data. Peak standardised uptake value and total lesion glycolysis (TLG) were explored as response measures, and compared to dose metrics including average dose (Davg), biologically effective dose, minimum dose to 70% of lesion volume and volume receiving at least 50 Gy. Prognostic factors examined included baseline TLG, RAS mutation status, FDG heterogeneity and dose heterogeneity. In an exploratory analysis, response and clinico-pathological variables were evaluated and compared to overall survival. Results Sixty-three lesions were analysed from 22 patients. Poor agreement was seen between predicted and measured dose values. TLG was a superior measure of response, and all dose metrics were significant prognostic factors, with a Davg of ~50 Gy derived as the critical threshold for a significant response (>50% reduction in TLG). No significant correlation was found between baseline TLG or RAS mutation status and response. Measured dose heterogeneity was a significant prognostic factor and when combined with Davg had a positive predictive value for response >80%. In the exploratory analysis for prognostic factors of survival, low hepatic tumour burden and mean reduction in TLG >65% were independently associated with improved overall survival. Conclusions Lesions receiving an average dose greater than 50 Gy are likely to have a significant response. For lesions receiving less than 50 Gy, dose heterogeneity is a significant prognostic factor. Lesions receiving an average dose less than 20 Gy are unlikely to respond. A reduction in TLG may be associated with improved overall survival. Electronic supplementary material The online version of this article (doi:10.1186/s13550-017-0292-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathy P Willowson
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW, Australia.
| | - Aimee R Hayes
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - David L H Chan
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Michael Tapner
- Research and Development, Sirtex Medical Limited, North Sydney, Australia
| | - Elizabeth J Bernard
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Richard Maher
- Department of Radiology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Stephen J Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia.,Faculty of Health Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
32
|
Abstract
Radioembolization (RE) is a relatively novel treatment modality for primary and secondary hepatic malignancies. Microspheres embedded with a β-emitting radioisotope are injected into the hepatic artery, resulting in microsphere deposition in the tumor arterioles and normal portal triads. Microsphere deposition in nontumorous parenchyma can result in radiation-induced liver injury, with lethal RE-induced liver disease (REILD) at the outer end of the spectrum. The primary aim of this study was to evaluate RE-related hepatotoxicity and present an overview of the currently applied definitions and clinically relevant characteristics of REILD. A systematic literature search on REILD was performed. Studies after the introduction of the term REILD (2008) were screened for definitions of REILD. Hepatotoxicity and applied definitions of REILD were compared. Liver biochemistry test abnormalities occur in up to 100% of patients after RE, mostly self-limiting. The incidence of symptomatic REILD varied between 0 and 31%, although in most reports, the incidence was 0-8%, with a lethal outcome in 0-5%. With the exception of bilirubin, the presentation of hepatotoxicity and REILD was similar for cirrhotic and noncirrhotic patients. No uniform definition of REILD was established in the current literature. Here, we propose a unifying definition and grading system for REILD. RE-related hepatotoxicity is a common phenomenon; symptomatic REILD, however, is rare. Currently, reporting of REILD is highly variable, precluding reliable comparison between studies, identification of risk factors, and treatment developments.
Collapse
|
33
|
Chiesa C, Mira M, Maccauro M, Spreafico C, Romito R, Morosi C, Camerini T, Carrara M, Pellizzari S, Negri A, Aliberti G, Sposito C, Bhoori S, Facciorusso A, Civelli E, Lanocita R, Padovano B, Migliorisi M, De Nile MC, Seregni E, Marchianò A, Crippa F, Mazzaferro V. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging 2015; 42:1718-1738. [PMID: 26112387 DOI: 10.1007/s00259-015-3068-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/09/2015] [Indexed: 12/30/2022]
Abstract
PURPOSE The aim of this study was to optimize the dosimetric approach and to review the absorbed doses delivered, taking into account radiobiology, in order to identify the optimal methodology for an individualized treatment planning strategy based on (99m)Tc-macroaggregated albumin (MAA) single photon emission computed tomography (SPECT) images. METHODS We performed retrospective dosimetry of the standard TheraSphere® treatment on 52 intermediate (n = 17) and advanced (i.e. portal vein thrombosis, n = 35) hepatocarcinoma patients with tumour burden < 50% and without obstruction of the main portal vein trunk. Response was monitored with the densitometric radiological criterion (European Association for the Study of the Liver) and treatment-related liver decompensation was defined ad hoc with a time cut-off of 6 months. Adverse events clearly attributable to disease progression or other causes were not attributed to treatment. Voxel dosimetry was performed with the local deposition method on (99m)Tc-MAA SPECT images. The reconstruction protocol was optimized. Concordance of (99m)Tc-MAA and (90)Y bremsstrahlung microsphere biodistributions was studied in 35 sequential patients. Two segmentation methods were used, based on SPECT alone (home-made code) or on coregistered SPECT/CT images (IMALYTICS™ by Philips). STRATOS™ absorbed dose calculation was validated for (90)Y with a single time point. Radiobiology was used introducing other dosimetric variables besides the mean absorbed dose D: equivalent uniform dose (EUD), biologically effective dose averaged over voxel values (BEDave) and equivalent uniform biologically effective dose (EUBED). Two sets of radiobiological parameters, the first derived from microsphere irradiation and the second from external beam radiotherapy (EBRT), were used. A total of 16 possible methodologies were compared. Tumour control probability (TCP) and normal tissue complication probability (NTCP) were derived. The area under the curve (AUC) of the receiver-operating characteristic (ROC) curve was used as a figure of merit to identify the methodology which gave the best separation in terms of dosimetry between responding and non-responding lesions and liver decompensated vs non-decompensated liver treatment. RESULTS MAA and (90)Y biodistributions were not different (71% of cases), different in 23% and uncertain in 6%. Response correlated with absorbed dose (Spearman's r from 0.48 to 0.69). Responding vs non-responding lesion absorbed doses were well separated, regardless of the methodology adopted (p = 0.0001, AUC from 0.75 to 0.87). EUBED gave significantly better separation with respect to mean dose (AUC = 0.87 vs 0.80, z = 2.07). Segmentation on SPECT gave better separation than on SPECT/CT. TCP(50%) was at 250 Gy for small lesion volumes (<10 cc) and higher than 1,000 Gy for large lesions (>10 cc). Apparent radiosensitivity values from TCP were around 0.003/Gy, a factor of 3-5 lower than in EBRT, as found by other authors. The dose-rate effect was negligible: a purely linear model can be applied. Toxicity incidence was significantly larger for Child B7 patients (89 vs 14%, p < 0.0001), who were therefore excluded from dose-toxicity analysis. Child A toxic vs non-toxic treatments were significantly separated in terms of dose averaged on whole non-tumoural parenchyma (including non-irradiated regions) with AUC from 0.73 to 0.94. TD50 was ≈ 100 Gy. No methodology was superior to parenchyma mean dose, which therefore can be used for planning, with a limit of TD15 ≈ 75 Gy. CONCLUSION A dosimetric treatment planning criterion for Child A patients without complete obstruction of the portal vein was developed.
Collapse
Affiliation(s)
- C Chiesa
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy.
| | - M Mira
- Postgraduate Health Physics School, University of Milan, Milan, Italy
| | - M Maccauro
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - C Spreafico
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - R Romito
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - C Morosi
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - T Camerini
- Scientific Direction, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M Carrara
- Health Physics, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Pellizzari
- Engineering Faculty, University La Sapienza, Rome, Italy
| | - A Negri
- Postgraduate Health Physics School, University of Milan, Milan, Italy
| | - G Aliberti
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - C Sposito
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Bhoori
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A Facciorusso
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - E Civelli
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - R Lanocita
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - B Padovano
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - M Migliorisi
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
- Clinical Engineering, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M C De Nile
- Physics Faculty, University of Pavia, Pavia, Lombardy, Italy
| | - E Seregni
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - A Marchianò
- Radiology 2, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - F Crippa
- Nuclear Medicine Division, Foundation IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - V Mazzaferro
- Surgery 1, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
34
|
O' Doherty J. A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy. ACTA ACUST UNITED AC 2015; 2:1-34. [PMID: 27182449 DOI: 10.17229/jdit.2015-0428-016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Yttrium-90 radioembolization (90Y-RE) is a well-established therapy for the treatment of hepatocellular carcinoma (HCC) and also of metastatic liver deposits from other malignancies. Nuclear Medicine and Cath Lab diagnostic imaging takes a pivotal role in the success of the treatment, and in order to fully exploit the efficacy of the technique and provide reliable quantitative dosimetry that are related to clinical endpoints in the era of personalized medicine, technical challenges in imaging need to be overcome. In this paper, the extensive literature of current 90Y-RE techniques and challenges facing it in terms of quantification and dosimetry are reviewed, with a focus on the current generation of 3D dosimetry techniques. Finally, new emerging techniques are reviewed which seek to overcome these challenges, such as high-resolution imaging, novel surgical procedures and the use of other radiopharmaceuticals for therapy and pre-therapeutic planning.
Collapse
Affiliation(s)
- Jim O' Doherty
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
35
|
Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, Gjertsson P, Bernhardt P. Increased absorbed liver dose in Selective Internal Radiation Therapy (SIRT) correlates with increased sphere-cluster frequency and absorbed dose inhomogeneity. EJNMMI Phys 2015; 2:10. [PMID: 26501812 PMCID: PMC4545624 DOI: 10.1186/s40658-015-0113-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/18/2015] [Indexed: 01/04/2023] Open
Abstract
Background The higher tolerated mean absorbed dose for selective internal radiation therapy (SIRT) with intra-arterially infused 90Y microspheres compared to external beam therapy is speculated to be caused by absorbed dose inhomogeneity, which allows for liver regeneration. However, the complex liver microanatomy and rheology makes modelling less valuable if the tolerance doses are not based on the actual microsphere distribution. The present study demonstrates the sphere distribution and small-scale absorbed dose inhomogeneity and its correlation with the mean absorbed dose in liver tissue resected after SIRT. Methods A patient with marginally resectable cholangiocarcinoma underwent SIRT 9 days prior to resection including adjacent normal liver tissue. The resected specimen was formalin-fixed and sliced into 1 to 2-mm sections. Forty-one normal liver biopsies 6-8 mm in diameter were punched from these sections and the radioactivity measured. Sixteen biopsies were further processed for detailed analyses by consecutive serial sectioning of 15 30-μm sections per biopsy, mounted and stained with haematoxylin-eosin. All sections were scrutinised for isolated or conglomerate spheres. Small-scale dose distributions were obtained by applying a 90Y-dose point kernel to the microsphere distributions. Results A total of 3888 spheres were found in the 240 sections. Clusters were frequently found as strings in the arterioles and as conglomerates in small arteries, with the largest cluster comprising 453 spheres. An increased mean absorbed dose in the punch biopsies correlated with large clusters and a greater coefficient of variation. In simulations the absorbed dose was 5–1240 Gy; 90% were 10-97 Gy and 45% were <30 Gy, the assumed tolerance in external beam therapy. Conclusions Sphere clusters were located in both arterioles and small arteries and increased in size with increasing sphere concentration, resulting in increased absorbed dose inhomogeneity, which contradicts earlier modelling studies.
Collapse
Affiliation(s)
- Jonas Högberg
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, SE-41346, Gothenburg, Sweden.
| | - Magnus Rizell
- Department of Surgery, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Ragnar Hultborn
- Department of Oncology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Johanna Svensson
- Department of Oncology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Olof Henrikson
- Department of Radiology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Johan Mölne
- Department of Pathology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Peter Gjertsson
- Department of Clinical Physiology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Peter Bernhardt
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, SE-41346, Gothenburg, Sweden. .,Department of Medical Physics & Biomedical Engineering, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| |
Collapse
|
36
|
Pacilio M, Amato E, Lanconelli N, Basile C, Torres LA, Botta F, Ferrari M, Diaz NC, Perez MC, Fernández M, Lassmann M, Gil AV, Cremonesi M. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT. Phys Med Biol 2015; 60:1945-64. [DOI: 10.1088/0031-9155/60/5/1945] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Walrand S, Hesse M, Wojcik R, Lhommel R, Jamar F. Optimal design of anger camera for bremsstrahlung imaging: monte carlo evaluation. Front Oncol 2014; 4:149. [PMID: 24982849 PMCID: PMC4056384 DOI: 10.3389/fonc.2014.00149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022] Open
Abstract
A conventional Anger camera is not adapted to bremsstrahlung imaging and, as a result, even using a reduced energy acquisition window, geometric x-rays represent <15% of the recorded events. This increases noise, limits the contrast, and reduces the quantification accuracy. Monte Carlo (MC) simulations of energy spectra showed that a camera based on a 30-mm-thick BGO crystal and equipped with a high energy pinhole collimator is well-adapted to bremsstrahlung imaging. The total scatter contamination is reduced by a factor 10 versus a conventional NaI camera equipped with a high energy parallel hole collimator enabling acquisition using an extended energy window ranging from 50 to 350 keV. By using the recorded event energy in the reconstruction method, shorter acquisition time and reduced orbit range will be usable allowing the design of a simplified mobile gantry. This is more convenient for use in a busy catheterization room. After injecting a safe activity, a fast single photon emission computed tomography could be performed without moving the catheter tip in order to assess the liver dosimetry and estimate the additional safe activity that could still be injected. Further long running time MC simulations of realistic acquisitions will allow assessing the quantification capability of such system. Simultaneously, a dedicated bremsstrahlung prototype camera reusing PMT–BGO blocks coming from a retired PET system is currently under design for further evaluation.
Collapse
Affiliation(s)
- Stephan Walrand
- Department of Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain , Brussels , Belgium
| | - Michel Hesse
- Department of Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain , Brussels , Belgium
| | | | - Renaud Lhommel
- Department of Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain , Brussels , Belgium
| | - François Jamar
- Department of Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|