1
|
Ke ZB, Chen JY, You Q, Sun JB, Xue YT, Ye XJ, Chen SH, Xue XY, Sun XL, Chen DN, Wei Y, Zheng QS, Chen SM, Xu N. Low TLR and PSMA-TV predict biochemical response to abiraterone acetate in metastatic prostate cancer patients developing castration resistance after chemohormonal therapy at hormone-sensitive stage. J Cancer Res Clin Oncol 2023; 149:5071-5084. [PMID: 36333565 DOI: 10.1007/s00432-022-04438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To explore whether 68Ga-PSMA-11 PET/CT-derived parameters could predict biochemical response to abiraterone acetate (AA) treatment and prognosis in metastatic prostate cancer patients developing castration resistance after chemohormonal therapy at hormone-sensitive stage. METHODS The clinicopathologic data of 106 mCRPC cases receiving AA treatment were retrospectively analyzed. Logistic regression analysis was used to determine the independent predictors of biochemical response to AA treatment. Cox analyses were applied to investigate the independent prognostic factors for time to biochemical progression (TTBP) and radiological progression-free survival (rPFS). Survival analysis and ROC curve were also used. RESULTS Multivariable Logistic analysis demonstrated that prior ADT duration ≥ 12 months, low prostate specific membrane antigen receptor-expressing tumor volume (PSMA-TV), low tumor to liver ratio (TLR) were independent predictors of biochemical response to AA treatment. Multivariate Cox analysis demonstrated that low PSMA-TV and low TLR were independent prognostic factors of longer TTBP and rPFS. The TTBP and rPFS of patients with higher PSMA-TV or TLR were significantly decreased compared with that of patients with lower PSMA-TV and TLR. The area under ROC curve (AUC) of combining ADT duration, PSMA-TV and TLR was 0.82 for predicting biochemical response to AA, which was significantly increased compared with that of other 68Ga-PSMA-11 PET/CT-derived parameters alone. CONCLUSIONS Low PSMA-TV, low TLR were vital independent predictors of biochemical response to AA treatment and were associated with preferable prognosis in mCRPC patients. Combining ADT duration, PSMA-TV and TLR performed well in distinguishing AA responders from non-responders in mCRPC patients.
Collapse
Affiliation(s)
- Zhi-Bin Ke
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qi You
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jiang-Bo Sun
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Ting Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Jian Ye
- Department of Ultrasound, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shao-Ming Chen
- Department of Nuclear Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Liao Z, Tang Y, Liu W, Liu Y, Peng S, Lan T, Liao J, Yang Y, Liu N, Li F. 111In and 131I labeled nimotuzumabs for targeted radiotherapy of a murine model of glioma. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Targeted molecular imaging of head and neck squamous cell carcinoma: a window into precision medicine. Chin Med J (Engl) 2021; 133:1325-1336. [PMID: 32404691 PMCID: PMC7289307 DOI: 10.1097/cm9.0000000000000751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor biomarkers play important roles in tumor growth, invasion, and metastasis. Imaging of specific biomarkers will help to understand different biological activities, thereby achieving precise medicine for each head and neck squamous cell carcinoma (HNSCC) patient. Here, we describe various molecular targets and molecular imaging modalities for HNSCC imaging. An extensive search was undertaken in the PubMed database with the keywords including “HNSCC,” “molecular imaging,” “biomarker,” and “multimodal imaging.” Imaging targets in HNSCC consist of the epidermal growth factor receptor, cluster of differentiation 44 variant 6 (CD44v6), and mesenchymal-epithelial transition factor and integrins. Targeted molecular imaging modalities in HNSCC include optical imaging, ultrasound, magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. Making the most of each single imaging method, targeted multimodal imaging has a great potential in the accurate diagnosis and therapy of HNSCC. By visualizing tumor biomarkers at cellular and molecular levels in vivo, targeted molecular imaging can be used to identify specific genetic and metabolic aberrations, thereby accelerating personalized treatment development for HNSCC patients.
Collapse
|
4
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
5
|
Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Molecules 2021; 26:molecules26041076. [PMID: 33670650 PMCID: PMC7922143 DOI: 10.3390/molecules26041076] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review.
Collapse
|
6
|
Sakai M, Parajuli RK, Kubota Y, Kubo N, Yamaguchi M, Nagao Y, Kawachi N, Kikuchi M, Arakawa K, Tashiro M. Crosstalk Reduction Using a Dual Energy Window Scatter Correction in Compton Imaging. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2453. [PMID: 32357411 PMCID: PMC7249665 DOI: 10.3390/s20092453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022]
Abstract
Compton cameras can simultaneously detect multi-isotopes; however, when simultaneous imaging is performed, crosstalk artifacts appear on the images obtained using a low-energy window. In conventional single-photon emission computed tomography, a dual energy window (DEW) subtraction method is used to reduce crosstalk. This study aimed to evaluate the effectiveness of employing the DEW technique to reduce crosstalk artifacts in Compton images obtained using low-energy windows. To this end, in this study, we compared reconstructed images obtained using either a photo-peak window or a scatter window by performing image subtraction based on the differences between the two images. Simulation calculations were performed to obtain the list data for the Compton camera using a 171 and a 511 keV point source. In the images reconstructed using these data, crosstalk artifacts were clearly observed in the images obtained using a 171 keV photo-peak energy window. In the images obtained using a scatter window (176-186 keV), only crosstalk artifacts were visible. The DEW method could eliminate the influence of high-energy sources on the images obtained with a photo-peak window, thereby improving quantitative capability. This was also observed when the DEW method was used on experimentally obtained images.
Collapse
Affiliation(s)
- Makoto Sakai
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Raj Kumar Parajuli
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba 263-8555, Japan
| | - Yoshiki Kubota
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Mitsutaka Yamaguchi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki 370-1292, Japan
| | - Yuto Nagao
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki 370-1292, Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki 370-1292, Japan
| | - Mikiko Kikuchi
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Kazuo Arakawa
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Mutsumi Tashiro
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| |
Collapse
|
7
|
Ku A, Chan C, Aghevlian S, Cai Z, Cescon D, Bratman SV, Ailles L, Hedley DW, Reilly RM. MicroSPECT/CT Imaging of Cell-Line and Patient-Derived EGFR-Positive Tumor Xenografts in Mice with Panitumumab Fab Modified with Hexahistidine Peptides To Enable Labeling with 99mTc(I) Tricarbonyl Complex. Mol Pharm 2019; 16:3559-3568. [PMID: 31242384 DOI: 10.1021/acs.molpharmaceut.9b00422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We aimed to investigate the feasibility of conjugating synthetic hexahistidine peptides (His6) peptides to panitumumab Fab (PmFab) to enable labeling with [99mTc(H2O)3(CO)3]+ complex and study these radioimmunoconjugates for imaging EGFR-overexpressing tumor xenografts in mice by microSPECT/CT. Fab were reacted with a 10-fold excess of sulfo-SMCC to introduce maleimide functional groups for reaction with the terminal thiol on peptides [CGYGGHHHHHH] that harbored the His6 motif. Modification of Fab with His6 peptides was assessed by SDS-PAGE/Western blot, and the number of His6 peptides introduced was quantified by a radiometric assay incorporating 123I-labeled peptides into the conjugation reaction. Radiolabeling was achieved by incubation of PmFab-His6 in PBS, pH 7.0, with [99mTc(H2O)3(CO)3]+ in a 1.4 MBq/μg ratio. The complex was prepared by adding [99mTcO4]- to an Isolink kit (Paul Scherrer Institute). Immunoreactivity was assessed in a direct (saturation) binding assay using MDA-MB-468 human triple-negative breast cancer (TNBC) cells. Tumor and normal tissue uptake and imaging properties of 99mTc-PmFab-His6 (70 μg; 35-40 MBq) injected i.v. (tail vein) were compared to irrelevant 99mTc-Fab 3913 in NOD/SCID mice engrafted subcutaneously (s.c.) with EGFR-overexpressing MDA-MB-468 or PANC-1 human pancreatic ductal carcinoma (PDCa) cell-line derived xenografts (CLX) at 4 and 24 h post injection (p.i.). In addition, tumor imaging studies were performed with 99mTc-PmFab-His6 in mice with patient-derived tumor xenografts (PDX) of TNBC, PDCa, and head and neck squamous cell carcinoma (HNSCC). Biodistribution studies in nontumor bearing Balb/c mice were performed to project the radiation absorbed doses for imaging studies in humans with 99mTc-PmFab-His6. PmFab was derivatized with 0.80 ± 0.03 His6 peptides. Western blot and SDS-PAGE confirmed the presence of His6 peptides. 99mTc-PmFab-His6 was labeled to high radiochemical purity (≥95%), and the Kd for binding to EGFR on MDA-MB-468 cells was 5.5 ± 0.4 × 10-8 mol/L. Tumor uptake of 99mTc-PmFab-His6 at 24 h p.i. was significantly (P < 0.05) higher than irrelevant 99mTc-Fab 3913 in mice with MDA-MB-468 tumors (14.9 ± 3.1%ID/g vs 3.0 ± 0.9%ID/g) and in mice with PANC-1 tumors (5.6 ± 0.6 vs 0.5 ± 0.1%ID/g). In mice implanted orthotopically in the pancreas with the same PDCa PDX, tumor uptake at 24 h p.i. was 4.2 ± 0.2%ID/g. Locoregional metastases of these PDCa tumors in the peritoneum exhibited slightly and significantly lower uptake than the primary tumors (3.1 ± 0.3 vs 4.2 ± 0.3%ID/g; P = 0.02). In mice implanted with different TNBC or HNSCC PDX, tumor uptake at 24 h p.i. was variable and ranged from 3.7 to 11.4%ID/g and 3.8-14.5%ID/g, respectively. MicroSPECT/CT visualized all CLX and PDX tumor xenografts at 4 and 24 h p.i. Dosimetry estimates revealed that in humans, the whole body dose from administration of 740-1110 MBq of 99mTc-PmFab-His6 would be 2-3 mSv, which is less than for a 99mTc-medronate bone scan (4 mSv).
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Conrad Chan
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Sadaf Aghevlian
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | | | | | | | | | - Raymond M Reilly
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada.,Department of Medical Imaging , University of Toronto , 263 McCaul Street , Toronto , ON M5T 1W7 , Canada.,Toronto General Research Institute and Joint Department of Medical Imaging , University Health Network , 200 Elizabeth Street , Toronto , ON M5G 2C4 , Canada
| |
Collapse
|
8
|
Burley TA, Da Pieve C, Martins CD, Ciobota DM, Allott L, Oyen WJG, Harrington KJ, Smith G, Kramer-Marek G. Affibody-Based PET Imaging to Guide EGFR-Targeted Cancer Therapy in Head and Neck Squamous Cell Cancer Models. J Nucl Med 2019; 60:353-361. [PMID: 30213849 PMCID: PMC6424230 DOI: 10.2967/jnumed.118.216069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023] Open
Abstract
In head and neck squamous cell cancer, the human epidermal growth factor receptor 1 (EGFR) is the dominant signaling molecule among all members of the family. So far, cetuximab is the only approved anti-EGFR monoclonal antibody used for the treatment of head and neck squamous cell cancer, but despite the benefits of adding it to standard treatment regimens, attempts to define a predictive biomarker to stratify patients for cetuximab treatment have been unsuccessful. We hypothesized that imaging with EGFR-specific radioligands may facilitate noninvasive measurement of EGFR expression across the entire tumor burden and allow for dynamic monitoring of cetuximab-mediated changes in receptor expression. Methods: EGFR-specific Affibody molecule (ZEGFR:03115) was radiolabeled with 89Zr and 18F. The radioligands were characterized in vitro and in mice bearing subcutaneous tumors with varying levels of EGFR expression. The protein dose for imaging studies was assessed by injecting 89Zr-deferoxamine-ZEGFR:03115 (2.4-3.6 MBq, 2 μg) either together with or 30 min after increasing amounts of unlabeled ZEGFR:03115 (1, 5, 10, 15, and 20 μg). PET images were acquired at 3, 24, and 48 h after injection, and the image quantification data were correlated with the biodistribution results. The EGFR expression and biodistribution of the tracer were assessed ex vivo by immunohistochemistry, Western blot, and autoradiography. To downregulate the EGFR level, treatment with cetuximab was performed, and 18F-aluminium fluoride-NOTA-ZEGFR:03115 (12 μg, 1.5-2 MBq/mouse) was used to monitor receptor changes. Results: In vivo studies demonstrated that coinjecting 10 μg of nonlabeled molecules with 89Zr-deferoxamine-ZEGFR:03115 allows for clear tumor visualization 3 h after injection. The radioconjugate tumor accumulation was EGFR-specific, and PET imaging data showed a clear differentiation between xenografts with varying EGFR expression levels. A strong correlation was observed between PET analysis, ex vivo estimates of tracer concentration, and receptor expression in tumor tissues. Additionally, 18F-aluminium fluoride-NOTA-ZEGFR:03115 could measure receptor downregulation in response to EGFR inhibition. Conclusion: ZEGFR:03115-based radioconjugates can assess different levels of EGFR level in vivo and measure receptor expression changes in response to cetuximab, indicating a potential for assessment of adequate treatment dosing with anti-EGFR antibodies.
Collapse
Affiliation(s)
- Thomas A Burley
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Chiara Da Pieve
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Carlos D Martins
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Daniela M Ciobota
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Louis Allott
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Wim J G Oyen
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
- Department of Nuclear Medicine, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Graham Smith
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| |
Collapse
|
9
|
Heskamp S, Wierstra PJ, Molkenboer-Kuenen JDM, Sandker GW, Thordardottir S, Cany J, Olive D, Bussink J, Boerman OC, Dolstra H, Aarntzen EHJG, Hobo WA. PD-L1 microSPECT/CT Imaging for Longitudinal Monitoring of PD-L1 Expression in Syngeneic and Humanized Mouse Models for Cancer. Cancer Immunol Res 2018; 7:150-161. [PMID: 30459153 DOI: 10.1158/2326-6066.cir-18-0280] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022]
Abstract
Antibodies that block the interaction between programmed death ligand 1 (PD-L1) and PD-1 have shown impressive responses in subgroups of patients with cancer. PD-L1 expression in tumors seems to be a prerequisite for treatment response. However, PD-L1 is heterogeneously expressed within tumor lesions and may change upon disease progression and treatment. Imaging of PD-L1 could aid in patient selection. Previously, we showed the feasibility to image PD-L1+ tumors in immunodeficient mice. However, PD-L1 is also expressed on immune cell subsets. Therefore, the aim of this study was to assess the potential of PD-L1 micro single-photon emission tomography/computed tomography (microSPECT/CT) using radiolabeled PD-L1 antibodies to (i) measure PD-L1 expression in two immunocompetent tumor models (syngeneic mice and humanized mice harboring PD-L1 expressing immune cells) and (ii) monitor therapy-induced changes in tumor PD-L1 expression. We showed that radiolabeled PD-L1 antibodies accumulated preferentially in PD-L1+ tumors, despite considerable uptake in certain normal lymphoid tissues (spleen and lymph nodes) and nonlymphoid tissues (duodenum and brown fat). PD-L1 microSPECT/CT imaging could also distinguish between high and low PD-L1-expressing tumors. The presence of PD-L1+ immune cells did not compromise tumor uptake of the human PD-L1 antibodies in humanized mice, and we demonstrated that radiotherapy-induced upregulation of PD-L1 expression in murine tumors could be monitored with microSPECT/CT imaging. Together, these data demonstrate that PD-L1 microSPECT/CT is a sensitive technique to detect variations in tumor PD-L1 expression, and in the future, this technique may enable patient selection for PD-1/PD-L1-targeted therapy.
Collapse
Affiliation(s)
- Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Peter J Wierstra
- Department of Radiology and Nuclear Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janneke D M Molkenboer-Kuenen
- Department of Radiology and Nuclear Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gerwin W Sandker
- Department of Radiology and Nuclear Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Soley Thordardottir
- Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeannette Cany
- Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daniel Olive
- CRCM, Immunity and Cancer, Inserm, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258, Marseille, France
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Harry Dolstra
- Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik H J G Aarntzen
- Department of Radiology and Nuclear Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willemijn A Hobo
- Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Bellaye PS, Moreau M, Raguin O, Oudot A, Bernhard C, Vrigneaud JM, Dumont L, Vandroux D, Denat F, Cochet A, Brunotte F, Collin B. Radiolabeled F(ab') 2-cetuximab for theranostic purposes in colorectal and skin tumor-bearing mice models. Clin Transl Oncol 2018; 20:1557-1570. [PMID: 29777377 PMCID: PMC6223717 DOI: 10.1007/s12094-018-1886-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE This study aimed to investigate theranostic strategies in colorectal and skin cancer based on fragments of cetuximab, an anti-EGFR mAb, labeled with radionuclide with imaging and therapeutic properties, 111In and 177Lu, respectively. METHODS We designed F(ab')2-fragments of cetuximab radiolabeled with 111In and 177Lu. 111In-F(ab')2-cetuximab tumor targeting and biodistribution were evaluated by SPECT in BalbC nude mice bearing primary colorectal tumors. The efficacy of 111In-F(ab')2-cetuximab to assess therapy efficacy was performed on BalbC nude mice bearing colorectal tumors receiving 17-DMAG, an HSP90 inhibitor. Therapeutic efficacy of the radioimmunotherapy based on 177Lu-F(ab')2-cetuximab was evaluated in SWISS nude mice bearing A431 tumors. RESULTS Radiolabeling procedure did not change F(ab')2-cetuximab and cetuximab immunoreactivity nor affinity for HER1 in vitro. 111In-DOTAGA-F(ab')2-cetuximab exhibited a peak tumor uptake at 24 h post-injection and showed a high tumor specificity determined by a significant decrease in tumor uptake after the addition of an excess of unlabeled-DOTAGA-F(ab')2-cetuximab. SPECT imaging of 111In-DOTAGA-F(ab')2-cetuximab allowed an accurate evaluation of tumor growth and successfully predicted the decrease in tumor growth induced by 17-DMAG. Finally, 177Lu-DOTAGA-F(ab')2-cetuximab radioimmunotherapy showed a significant reduction of tumor growth at 4 and 8 MBq doses. CONCLUSIONS 111In-DOTAGA-F(ab')2-cetuximab is a reliable and stable tool for specific in vivo tumor targeting and is suitable for therapy efficacy assessment. 177Lu-DOTAGA-F(ab')2-cetuximab is an interesting theranostic tool allowing therapy and imaging.
Collapse
Affiliation(s)
- P-S Bellaye
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France.
| | - M Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21078, Dijon Cedex, France
| | - O Raguin
- Oncodesign, 21076, Dijon Cedex, France
| | - A Oudot
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France
| | - C Bernhard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21078, Dijon Cedex, France
| | - J-M Vrigneaud
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France
| | - L Dumont
- NVH Medicinal, 64 rue Sully, 21000, Dijon, France
| | - D Vandroux
- NVH Medicinal, 64 rue Sully, 21000, Dijon, France
| | - F Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21078, Dijon Cedex, France
| | - A Cochet
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France
| | - F Brunotte
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France
| | - B Collin
- Service de médecine nucléaire, Centre Georges-François Leclerc, 1 rue du professeur Marion, 21000, Dijon, France.,Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21078, Dijon Cedex, France
| |
Collapse
|
11
|
Early Response Monitoring Following Radiation Therapy by Using [ 18F]FDG and [ 11C]Acetate PET in Prostate Cancer Xenograft Model with Metabolomics Corroboration. Molecules 2017; 22:molecules22111946. [PMID: 29125557 PMCID: PMC6150287 DOI: 10.3390/molecules22111946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/26/2022] Open
Abstract
We aim to characterize the metabolic changes associated with early response to radiation therapy in a prostate cancer mouse model by 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) and [11C]acetate ([11C]ACT) positron emission tomography, with nuclear magnetic resonance (NMR) metabolomics corroboration. [18F]FDG and [11C]ACT PET were performed before and following irradiation (RT, 15Gy) for transgenic adenocarcinoma of mouse prostate xenografts. The underlying metabolomics alterations of tumor tissues were analyzed by using ex vivo NMR. The [18F]FDG total lesion glucose (TLG) of the tumor significant increased in the RT group at Days 1 and 3 post-irradiation, compared with the non-RT group (p < 0.05). The [11C]ACT maximum standard uptake value (SUVmax) in RT (0.83 ± 0.02) and non-RT groups (0.85 ± 0.07) were not significantly different (p > 0.05). The ex vivo NMR analysis showed a 1.70-fold increase in glucose and a 1.2-fold increase in acetate in the RT group at Day 3 post-irradiation (p < 0.05). Concordantly, the expressions of cytoplasmic acetyl-CoA synthetase in the irradiated tumors was overexpressed at Day 3 post-irradiation (p < 0.05). Therefore, TLG of [18F]FDG in vivo PET images can map early treatment response following irradiation and be a promising prognostic indicator in a longitudinal preclinical study. The underlying metabolic alterations was not reflected by the [11C]ACT PET.
Collapse
|
12
|
Garousi J, Andersson KG, Dam JH, Olsen BB, Mitran B, Orlova A, Buijs J, Ståhl S, Löfblom J, Thisgaard H, Tolmachev V. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule. Sci Rep 2017; 7:5961. [PMID: 28729680 PMCID: PMC5519605 DOI: 10.1038/s41598-017-05700-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/01/2017] [Indexed: 02/04/2023] Open
Abstract
Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111In-labelled DOTA-conjugated ZEGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-ZEGFR:2377. DOTA-ZEGFR:2377 was labelled with 57Co (T1/2 = 271.8 d), 55Co (T1/2 = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68Ga (T1/2 = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57Co was used in animal studies. Both 57Co-DOTA-ZEGFR:2377 and 68Ga-DOTA-ZEGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-ZEGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57Co-DOTA-ZEGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68Ga-DOTA-ZEGFR:2377. The results of this study suggest that the positron-emitting cobalt isotope 55Co would be an optimal label for DOTA-ZEGFR:2377 and further development should concentrate on this radionuclide as a label.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ken G Andersson
- Department of Protein Technology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johan H Dam
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Birgitte B Olsen
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Department of Protein Technology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Technology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Busk M, Munk OL, Jakobsen S, Frøkiær J, Overgaard J, Horsman MR. FDG-PET reproducibility in tumor-bearing mice: comparing a traditional SUV approach with a tumor-to-brain tissue ratio approach. Acta Oncol 2017; 56:706-712. [PMID: 28094665 DOI: 10.1080/0284186x.2016.1276620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Current [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) procedures in tumor-bearing mice typically includes fasting, anesthesia, and standardized uptake value (SUV)-based quantification. Such procedures may be inappropriate for prolonged multiscan experiments. We hypothesize that normalization of tumor FDG retention relative to a suitable reference tissue may improve accuracy as this method may be less susceptible to uncontrollable day-to-day changes in blood glucose levels, physical activity, or unnoticed imperfect tail vein injections. MATERIAL AND METHODS Fed non-anesthetized tumor-bearing mice were administered FDG intravenously (i.v.) or intraperitoneally (i.p.) and PET scanned on consecutive days using a Mediso nanoScan PET/magnetic resonance imaging (MRI). Reproducibility of various PET-deduced measures of tumor FDG retention, including normalization to FDG signal in reference organs and a conventional SUV approach, was evaluated. RESULTS Day-to-day variability in i.v. injected mice was lower when tumor FDG retention was normalized to brain signal (T/B), compared to normalization to other tissues or when using SUV-based normalization. Assessment of tissue radioactivity in dissected tissues confirmed the validity of PET-derived T/B ratios. Mean T/B and SUV values were similar in i.v. and i.p. administered animals, but SUV normalization was more robust in the i.p. group than in the i.v. group. CONCLUSIONS Multimodality scanners allow tissue delineation and normalization of tumor FDG uptake relative to reference tissues. Normalization to brain, but not liver or kidney, improved scan reproducibility considerably and was superior to traditional SUV quantification in i.v. tracer-injected animals. Day-to-day variability in SUV's was lower in i.p. than in i.v. injected animals, and i.p. injections may therefore be a valuable alternative in prolonged rodent studies, where repeated vein injections are undesirable.
Collapse
Affiliation(s)
- Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole L. Munk
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Frøkiær
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Lam K, Chan C, Reilly RM. Development and preclinical studies of 64Cu-NOTA-pertuzumab F(ab') 2 for imaging changes in tumor HER2 expression associated with response to trastuzumab by PET/CT. MAbs 2016; 9:154-164. [PMID: 27813707 DOI: 10.1080/19420862.2016.1255389] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We previously reported that microSPECT/CT imaging with 111In-labeled pertuzumab detected decreased HER2 expression in human breast cancer (BC) xenografts in athymic mice associated with response to treatment with trastuzumab (Herceptin). Our aim was to extend these results to PET/CT by constructing F(ab')2 of pertuzumab modified with NOTA chelators for complexing 64Cu. The effect of the administered mass (5-200 µg) of 64Cu-NOTA-pertuzumab F(ab')2 was studied in NOD/SCID mice engrafted with HER2-positive SK-OV-3 human ovarian cancer xenografts. Biodistribution studies were performed in non-tumor bearing Balb/c mice to predict radiation doses to normal organs in humans. Serial PET/CT imaging was conducted on mice engrafted with HER2-positive and trastuzumab-sensitive BT-474 or trastuzumab-insensitive SK-OV-3 xenografted mice treated with weekly doses of trastuzumab. There were no significant effects of the administered mass of 64Cu-NOTA-pertuzumab F(ab')2 on tumor or normal tissue uptake. The predicted total body dose in humans was 0.015 mSv/MBq, a 3.3-fold reduction compared to 111In-labeled pertuzumab. MicroPET/CT images revealed specific tumor uptake of 64Cu-NOTA-pertuzumab F(ab')2 at 24 or 48 h post-injection in mice with SK-OV-3 tumors. Image analysis of mice treated with trastuzumab showed 2-fold reduced uptake of 64Cu-NOTA-pertuzumab F(ab')2 in BT-474 tumors after 1 week of trastuzumab normalized to baseline, and 1.9-fold increased uptake in SK-OV-3 tumors after 3 weeks of trastuzumab, consistent with tumor response and resistance, respectively. We conclude that PET/CT imaging with 64Cu-NOTA-pertuzumab F(ab')2 detected changes in HER2 expression in response to trastuzumab while delivering a lower total body radiation dose compared to 111In-labeled pertuzumab.
Collapse
Affiliation(s)
- Karen Lam
- a Department of Pharmaceutical Sciences , University of Toronto , Toronto , ON , Canada
| | - Conrad Chan
- a Department of Pharmaceutical Sciences , University of Toronto , Toronto , ON , Canada
| | - Raymond M Reilly
- a Department of Pharmaceutical Sciences , University of Toronto , Toronto , ON , Canada.,b Department of Medical Imaging , University of Toronto , Toronto , ON , Canada.,c Toronto General Research Institute, University Health Network , Toronto , ON , Canada
| |
Collapse
|
15
|
Kramer-Marek G, Oyen WJG. Targeting the Human Epidermal Growth Factor Receptors with Immuno-PET: Imaging Biomarkers from Bench to Bedside. J Nucl Med 2016; 57:996-1001. [PMID: 27173163 DOI: 10.2967/jnumed.115.169540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023] Open
Affiliation(s)
- Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Wim J G Oyen
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and Royal Marsden NHS Foundation Trust, Department of Nuclear Medicine, London, United Kingdom
| |
Collapse
|
16
|
Spiegelberg D, Mortensen AC, Selvaraju RK, Eriksson O, Stenerlöw B, Nestor M. Molecular imaging of EGFR and CD44v6 for prediction and response monitoring of HSP90 inhibition in an in vivo squamous cell carcinoma model. Eur J Nucl Med Mol Imaging 2015; 43:974-982. [PMID: 26627081 PMCID: PMC4819754 DOI: 10.1007/s00259-015-3260-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/10/2015] [Indexed: 01/19/2023]
Abstract
Purpose Heat shock protein 90 (HSP90) is essential for the activation and stabilization of numerous oncogenic client proteins. AT13387 is a novel HSP90 inhibitor promoting degradation of oncogenic proteins upon binding, and may also act as a radiosensitizer. For optimal treatment there is, however, the need for identification of biomarkers for patient stratification and therapeutic response monitoring, and to find suitable targets for combination treatments. The aim of this study was to assess the response of surface antigens commonly expressed in squamous cell carcinoma to AT13387 treatment, and to find suitable biomarkers for molecular imaging and radioimmunotherapy in combination with HSP90 inhibition. Methods Cancer cell proliferation and radioimmunoassays were used to evaluate the effect of AT13387 on target antigen expression in vitro. Inhibitor effects were then assessed in vivo in mice-xenografts. Animals were treated with AT13387 (5 × 50 mg/kg), and were imaged with PET using either 18F-FDG or 124I-labelled tracers for EGFR and CD44v6, and this was followed by ex-vivo biodistribution analysis and immunohistochemical staining. Results AT13387 exposure resulted in high cytotoxicity and possible radiosensitization with IC50 values below 4 nM. Both in vitro and in vivo AT13387 effectively downregulated HSP90 client proteins. PET imaging with 124I-cetuximab showed a significant decrease of EGFR in AT13387-treated animals compared with untreated animals. In contrast, the squamous cell carcinoma-associated biomarker CD44v6, visualized with 124I-AbD19384 as well as 18F-FDG uptake, were not significantly altered by AT13387 treatment. Conclusion We conclude that AT13387 downregulates HSP90 client proteins, and that molecular imaging of these proteins may be a suitable approach for assessing treatment response. Furthermore, radioimmunotherapy targeting CD44v6 in combination with AT13387 may potentiate the radioimmunotherapy outcome due to radiosensitizing effects of the drug, and could potentially lead to a lower dose to normal tissues. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3260-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Anja C Mortensen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ram K Selvaraju
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Unit of Otolaryngology and Head and Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
De Souza R, Spence T, Huang H, Allen C. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents. J Control Release 2015; 219:313-330. [PMID: 26409122 DOI: 10.1016/j.jconrel.2015.09.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
The majority of animal models of cancer have performed poorly in terms of predicting clinical performance of new therapeutics, which are most often first evaluated in patients with advanced, metastatic disease. The development and use of metastatic models of cancer may enhance clinical translatability of preclinical studies focused on the development of nanotechnology-based drug delivery systems and macromolecular therapeutics, potentially accelerating their clinical implementation. It is recognized that the development and use of such models are not without challenge. Preclinical imaging tools offer a solution by allowing temporal and spatial characterization of metastatic lesions. This paper provides a review of imaging methods applicable for evaluation of novel therapeutics in clinically relevant models of advanced cancer. An overview of currently utilized models of oncology in small animals is followed by image-based development and characterization of visceral metastatic cancer models. Examples of imaging tools employed for metastatic lesion detection, evaluation of anti-tumor and anti-metastatic potential and biodistribution of novel therapies, as well as the co-development and/or use of imageable surrogates of response, are also discussed. While the focus is on development of macromolecular and nanotechnology-based therapeutics, examples with small molecules are included in some cases to illustrate concepts and approaches that can be applied in the assessment of nanotechnologies or macromolecules.
Collapse
Affiliation(s)
- Raquel De Souza
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Tara Spence
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Huang Huang
- DLVR Therapeutics, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
18
|
van Dijk LK, Boerman OC, Kaanders JHAM, Bussink J. Epidermal growth factor receptor imaging in human head and neck cancer xenografts. Acta Oncol 2015; 54:1263-7. [PMID: 26248024 DOI: 10.3109/0284186x.2015.1063778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular imaging of specific biomarkers can have prognostic, predictive or monitoring value in head and neck squamous cell carcinoma (HNSCC). The epidermal growth factor receptor (EGFR) is involved in various radiation resistance mechanisms as it steers the pathways related to DNA damage repair, proliferation, hypoxia and apoptosis. Radiolabeled labeled F(ab')2 fragments of the EGFR antibody cetuximab can be applied for non-invasive imaging of this receptor. Preclinical studies have shown that radioresistant tumors had a higher tracer uptake after irradiation, probably due to upregulation of membranous EGFR, thereby increasing target availability possibly as a compensation mechanism. Tumors with increased EGFR availability were also more responsive to the EGFR inhibitor cetuximab. Potentially, radionuclide imaging of the EGFR can be applied for monitoring treatment regimens in clinical practice.
Collapse
Affiliation(s)
- Laura K van Dijk
- a Department of Radiation Oncology , Radboud University Medical Center , Nijmegen , The Netherlands
- b Department of Radiology and Nuclear Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Otto C Boerman
- b Department of Radiology and Nuclear Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Johannes H A M Kaanders
- a Department of Radiation Oncology , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Johan Bussink
- a Department of Radiation Oncology , Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|