1
|
de Scals S, Fraile LM, Udías JM, Martínez Cortés L, Oteo M, Morcillo MÁ, Carreras-Delgado JL, Cabrera-Martín MN, España S. Feasibility study of a SiPM-fiber detector for non-invasive measurement of arterial input function for preclinical and clinical positron emission tomography. EJNMMI Phys 2024; 11:12. [PMID: 38291187 PMCID: PMC10828322 DOI: 10.1186/s40658-024-00618-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Pharmacokinetic positron emission tomography (PET) studies rely on the measurement of the arterial input function (AIF), which represents the time-activity curve of the radiotracer concentration in the blood plasma. Traditionally, obtaining the AIF requires invasive procedures, such as arterial catheterization, which can be challenging, time-consuming, and associated with potential risks. Therefore, the development of non-invasive techniques for AIF measurement is highly desirable. This study presents a detector for the non-invasive measurement of the AIF in PET studies. The detector is based on the combination of scintillation fibers and silicon photomultipliers (SiPMs) which leads to a very compact and rugged device. The feasibility of the detector was assessed through Monte Carlo simulations conducted on mouse tail and human wrist anatomies studying relevant parameters such as energy spectrum, detector efficiency and minimum detectable activity (MDA). The simulations involved the use of 18F and 68Ga isotopes, which exhibit significantly different positron ranges. In addition, several prototypes were built in order to study the different components of the detector including the scintillation fiber, the coating of the fiber, the SiPMs, and the operating configuration. Finally, the simulations were compared with experimental measurements conducted using a tube filled with both 18F and 68Ga to validate the obtained results. The MDA achieved for both anatomies (approximately 1000 kBq/mL for mice and 1 kBq/mL for humans) falls below the peak radiotracer concentrations typically found in PET studies, affirming the feasibility of conducting non-invasive AIF measurements with the fiber detector. The sensitivity for measurements with a tube filled with 18F (68Ga) was 1.2 (2.07) cps/(kBq/mL), while for simulations, it was 2.81 (6.23) cps/(kBq/mL). Further studies are needed to validate these results in pharmacokinetic PET studies.
Collapse
Affiliation(s)
- Sara de Scals
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Luis Mario Fraile
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Laura Martínez Cortés
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Marta Oteo
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Miguel Ángel Morcillo
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | | | - Samuel España
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain.
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
2
|
Sarrhini O, D'Orléans-Juste P, Rousseau JA, Beaudoin JF, Lecomte R. Enhanced Extraction of Blood and Tissue Time-Activity Curves in Cardiac Mouse FDG PET Imaging by Means of Constrained Nonnegative Matrix Factorization. Int J Biomed Imaging 2023; 2023:5366733. [PMID: 37362614 PMCID: PMC10287520 DOI: 10.1155/2023/5366733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
We propose an enhanced method to accurately retrieve time-activity curves (TACs) of blood and tissue from dynamic 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) cardiac images of mice. The method is noninvasive and consists of using a constrained nonnegative matrix factorization algorithm (CNMF) applied to the matrix (A) containing the intensity values of the voxels of the left ventricle (LV) PET image. CNMF factorizes A into nonnegative matrices H and W, respectively, representing the physiological factors (blood and tissue) and their associated weights, by minimizing an extended cost function. We verified our method on 32 C57BL/6 mice, 14 of them with acute myocardial infarction (AMI). With CNMF, we could break down the mouse LV into myocardial and blood pool images. Their corresponding TACs were used in kinetic modeling to readily determine the [18F]FDG influx constant (Ki) required to compute the myocardial metabolic rate of glucose. The calculated Ki values using CNMF for the heart of control mice were in good agreement with those published in the literature. Significant differences in Ki values for the heart of control and AMI mice were found using CNMF. The values of the elements of W agreed well with the LV structural changes induced by ligation of the left coronary artery. CNMF was compared with the recently published method based on robust unmixing of dynamic sequences using regions of interest (RUDUR). A clear improvement of signal separation was observed with CNMF compared to the RUDUR method.
Collapse
Affiliation(s)
- Otman Sarrhini
- Sherbrooke Molecular Imaging Center, Research Center of the Sherbrooke University Hospital (CRCHUS), Sherbrooke, QC, Canada
| | - Pedro D'Orléans-Juste
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jacques A. Rousseau
- Sherbrooke Molecular Imaging Center, Research Center of the Sherbrooke University Hospital (CRCHUS), Sherbrooke, QC, Canada
| | - Jean-François Beaudoin
- Sherbrooke Molecular Imaging Center, Research Center of the Sherbrooke University Hospital (CRCHUS), Sherbrooke, QC, Canada
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center, Research Center of the Sherbrooke University Hospital (CRCHUS), Sherbrooke, QC, Canada
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Yusoff R, Baco S, Rahman ABA, Ghazali K, Gabda D, Al-Somali F. Design study on the microfluidic scintillator detector using GEANT4. ADVANCES IN FRACTURE AND DAMAGE MECHANICS XX 2023. [DOI: 10.1063/5.0127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Imaging Technologies for Cerebral Pharmacokinetic Studies: Progress and Perspectives. Biomedicines 2022; 10:biomedicines10102447. [PMID: 36289709 PMCID: PMC9598571 DOI: 10.3390/biomedicines10102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacokinetic assessment of drug disposition processes in vivo is critical in predicting pharmacodynamics and toxicology to reduce the risk of inappropriate drug development. The blood–brain barrier (BBB), a special physiological structure in brain tissue, hinders the entry of targeted drugs into the central nervous system (CNS), making the drug concentrations in target tissue correlate poorly with the blood drug concentrations. Additionally, once non-CNS drugs act directly on the fragile and important brain tissue, they may produce extra-therapeutic effects that may impair CNS function. Thus, an intracerebral pharmacokinetic study was developed to reflect the disposition and course of action of drugs following intracerebral absorption. Through an increasing understanding of the fine structure in the brain and the rapid development of analytical techniques, cerebral pharmacokinetic techniques have developed into non-invasive imaging techniques. Through non-invasive imaging techniques, molecules can be tracked and visualized in the entire BBB, visualizing how they enter the BBB, allowing quantitative tools to be combined with the imaging system to derive reliable pharmacokinetic profiles. The advent of imaging-based pharmacokinetic techniques in the brain has made the field of intracerebral pharmacokinetics more complete and reliable, paving the way for elucidating the dynamics of drug action in the brain and predicting its course. The paper reviews the development and application of imaging technologies for cerebral pharmacokinetic study, represented by optical imaging, radiographic autoradiography, radionuclide imaging and mass spectrometry imaging, and objectively evaluates the advantages and limitations of these methods for predicting the pharmacodynamic and toxic effects of drugs in brain tissues.
Collapse
|
5
|
Convert L, Sarrhini O, Paillé M, Salem N, Charette PG, Lecomte R. The ultra high sensitivity blood counter: a compact, MRI-compatible, radioactivity counter for pharmacokinetic studies in µL volumes. Biomed Phys Eng Express 2022; 8. [PMID: 35038694 DOI: 10.1088/2057-1976/ac4c29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Quantification of physiological parameters in preclinical pharmacokinetic studies based on nuclear imaging requires the monitoring of arterial radioactivity over time, known as the arterial input function (AIF). Continuous derivation of the AIF in rodent models is very challenging because of the limited blood volume available for sampling. To address this challenge, an Ultra High Sensitivity Blood Counter (UHS-BC) was developed. The device detects beta particles in real-time using silicon photodiodes, custom low-noise electronics, and 3D-printed plastic cartridges to hold standard catheters. Two prototypes were built and characterized in two facilities. Sensitivities up to 39% for18F and 58% for11C-based positron emission tomography (PET) tracers were demonstrated.99mTc and125I based Single Photon Emission Computed Tomography (SPECT) tracers were detected with greater than 3% and 10% sensitivity, respectively, opening new applications in nuclear imaging and fundamental biology research. Measured energy spectra show all relevant peaks down to a minimum detectable energy of 20 keV. The UHS-BC was shown to be highly reliable, robust towards parasitic background radiation and electromagnetic interference in the PET or MRI environment. The UHS-BC provides reproducible results under various experimental conditions and was demonstrated to be stable over days of continuous operation. Animal experiments showed that the UHS-BC performs accurate AIF measurements using low detection volumes suitable for small animal models in PET, SPECT and PET/MRI investigations. This tool will help to reduce the time and number of animals required for pharmacokinetic studies, thus increasing the throughput of new drug development.
Collapse
Affiliation(s)
- Laurence Convert
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 boul. de l'Université, Parc Innovation, Pavillon P2, Sherbrooke, Sherbrooke, Quebec, J1K0A5, CANADA
| | - Otman Sarrhini
- Sherbrooke Molecular Imaging Centre of CRCHUS and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12 ave Nord, Sherbrooke, Quebec, J1H 5N4, CANADA
| | - Maxime Paillé
- Sherbrooke Molecular Imaging Centre of CRCHUS and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001 12 Ave Nord, Sherbrooke, Quebec, J1H 5N4, CANADA
| | - Nicolas Salem
- Biogen Idec Inc, 225 Binney St, Cambridge, Massachusetts, 02142, UNITED STATES
| | - Paul Gilles Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463, Université de Sherbrooke, 3000 boul. de l'Université, Parc Innovation, Pavillon P2, Sherbrooke, Quebec, J1K 0A5, CANADA
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Centre of CRCHUS and Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, 3001 12 Ave Nord, Sherbrooke, Quebec, J1K 2R1, CANADA
| |
Collapse
|
6
|
Kim TJ, Ha B, Bick AD, Kim M, Tang SK, Pratx G. Microfluidics-Coupled Radioluminescence Microscopy for In Vitro Radiotracer Kinetic Studies. Anal Chem 2021; 93:4425-4433. [PMID: 33647202 PMCID: PMC8006742 DOI: 10.1021/acs.analchem.0c04321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrated bioassay systems that combine microfluidics and radiation detectors can deliver medical radiopharmaceuticals to live cells with precise timing, while minimizing radiation dose and sample volume. However, the spatial resolution of many radiation imaging systems is limited to bulk cell populations. Here, we demonstrate microfluidics-coupled radioluminescence microscopy (μF-RLM), a new integrated system that can image radiotracer uptake in live adherent cells growing inside microincubators with spatial resolution better than 30 μm. Our method enables on-chip radionuclide imaging by incorporating an inorganic scintillator plate (CdWO4) into a microfluidic chip. We apply this approach to investigate the factors that influence the dynamic uptake of [18F]fluorodeoxyglucose (FDG) by cancer cells. In the first experiment, we measured the effect of flow on FDG uptake of cells and found that a continuous flow of the radiotracer led to fourfold higher uptake than static incubation, suggesting that convective replenishment enhances molecular radiotracer transport into cells. In the second set of experiments, we applied pharmacokinetic modeling to show that lactic acidosis inhibits FDG uptake by cancer cells in vitro and that this decrease is primarily due to downregulation of FDG transport into the cells. The other two rate constants, which represent FDG export and FDG metabolism, were relatively unaffected by lactic acidosis. Lactic acidosis is common in solid tumors because of the dysregulated metabolism and inefficient vasculature. In conclusion, μF-RLM is a simple and practical approach for integrating high-resolution radionuclide imaging within standard microfluidics devices, thus potentially opening venues for investigating the efficacy of radiopharmaceuticals in in vitro cancer models.
Collapse
Affiliation(s)
- Tae Jin Kim
- Division of Medical Physics, Department of Radiation Oncology, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Alison Dana Bick
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Minkyu Kim
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Sindy K.Y. Tang
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Guillem Pratx
- Division of Medical Physics, Department of Radiation Oncology, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| |
Collapse
|
7
|
Liu Z, Zhang P, Ji H, Long Y, Jing B, Wan L, Xi D, An R, Lan X. A mini-panel PET scanner-based microfluidic radiobioassay system allowing high-throughput imaging of real-time cellular pharmacokinetics. LAB ON A CHIP 2020; 20:1110-1123. [PMID: 32043092 DOI: 10.1039/c9lc01066a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
On-chip radiometric detection of biological samples using radiotracers has become an emerging research field known as microfluidic radiobioassays. Performing parallel radiobioassays is highly desirable for saving time/effort, reducing experimental variation between assays, and minimizing the cost of the radioisotope. Continuously infused microfluidic radioassay (CIMR) is one of the useful tools for investigating cellular pharmacokinetics and assessing the binding and uptakes of radiopharmaceuticals. However, existing CIMR systems can only measure the dynamics of one sample at a time due to the limited field of view (FOV) of the positron detector. To increase the throughput, we propose a new CIMR system with a custom-built miniaturized panel-based positron-emission tomography (PET) scanner and a parallel infusion setup/method, capable of imaging the cellular pharmacokinetics of three samples in one measurement. With this system, the pharmacokinetics of parallel or comparison samples can be imaged simultaneously. The increased throughput is attributed to two innovations: 1) the large 3D FOV of the mini-panel PET scanner, enabling more samples to be imaged in the microfluidic chip; and 2) a parallel infusion method, in which only one reference chamber is needed for indicating the dynamic input of the infused radiotracer medium, thus saving the total reference chambers needed compared to the current sequential infusion method. Combining the CIMR technique and the mini-panel PET scanner, this study also firstly demonstrated the feasibility of using PET, as an imaging modality, for microfluidic radiobioassays. Besides the increased throughput, the 3D imaging of PET also provides possibilities for further applications such as organoid/3D culturing systems, non-planar microfluidics, and organs-on-chips. The system is more practical for a broader range of applications in nuclear medicine, molecular imaging, and lab-on-a-chip studies.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Pengfei Zhang
- Biomedical Engineering Department, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Boping Jing
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lu Wan
- RAYDATA Technology Co., Ltd. (Wuhan), Wuhan 430074, China
| | - Daoming Xi
- Raycan Technology Co., Ltd. (Suzhou), Suzhou 215163, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
8
|
Abstract
Molecular imaging enables both spatial and temporal understanding of the complex biologic systems underlying carcinogenesis and malignant spread. Single-photon emission tomography (SPECT) is a versatile nuclear imaging-based technique with ideal properties to study these processes in vivo in small animal models, as well as to identify potential drug candidates and characterize their antitumor action and potential adverse effects. Small animal SPECT and SPECT-CT (single-photon emission tomography combined with computer tomography) systems continue to evolve, as do the numerous SPECT radiopharmaceutical agents, allowing unprecedented sensitivity and quantitative molecular imaging capabilities. Several of these advances, their specific applications in oncology as well as new areas of exploration are highlighted in this chapter.
Collapse
Affiliation(s)
- Benjamin L Franc
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Carina Mari Aparici
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA
| |
Collapse
|
9
|
Velasco C, Mota-Cobián A, Mateo J, España S. Development of a blood sample detector for multi-tracer positron emission tomography using gamma spectroscopy. EJNMMI Phys 2019; 6:25. [PMID: 31845002 PMCID: PMC6915254 DOI: 10.1186/s40658-019-0263-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. RESULTS The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson's correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. CONCLUSIONS Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.
Collapse
Affiliation(s)
- Carlos Velasco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Complutense de Madrid; IdISSC, Madrid, Spain
| | - Adriana Mota-Cobián
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Complutense de Madrid; IdISSC, Madrid, Spain
| | - Jesús Mateo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Universidad Complutense de Madrid; IdISSC, Madrid, Spain.
| |
Collapse
|
10
|
Espedal H, Fonnes T, Fasmer KE, Krakstad C, Haldorsen IS. Imaging of Preclinical Endometrial Cancer Models for Monitoring Tumor Progression and Response to Targeted Therapy. Cancers (Basel) 2019; 11:cancers11121885. [PMID: 31783595 PMCID: PMC6966645 DOI: 10.3390/cancers11121885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in industrialized countries. Most patients are cured by surgery; however, about 15% of the patients develop recurrence with limited treatment options. Patient-derived tumor xenograft (PDX) mouse models represent useful tools for preclinical evaluation of new therapies and biomarker identification. Preclinical imaging by magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT), single-photon emission computed tomography (SPECT) and optical imaging during disease progression enables visualization and quantification of functional tumor characteristics, which may serve as imaging biomarkers guiding targeted therapies. A critical question, however, is whether the in vivo model systems mimic the disease setting in patients to such an extent that the imaging biomarkers may be translatable to the clinic. The primary objective of this review is to give an overview of current and novel preclinical imaging methods relevant for endometrial cancer animal models. Furthermore, we highlight how these advanced imaging methods depict pathogenic mechanisms important for tumor progression that represent potential targets for treatment in endometrial cancer.
Collapse
Affiliation(s)
- Heidi Espedal
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: (H.E.); (I.S.H.)
| | - Tina Fonnes
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (T.F.); (C.K.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kristine E. Fasmer
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (T.F.); (C.K.)
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ingfrid S. Haldorsen
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway;
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: (H.E.); (I.S.H.)
| |
Collapse
|
11
|
Aziz A, Medina-Sánchez M, Claussen J, Schmidt OG. Real-Time Optoacoustic Tracking of Single Moving Micro-objects in Deep Phantom and Ex Vivo Tissues. NANO LETTERS 2019; 19:6612-6620. [PMID: 31411038 DOI: 10.1021/acs.nanolett.9b02869] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Medical imaging plays an important role in diagnosis and treatment of multiple diseases. It is a field which seeks for improved sensitivity and spatiotemporal resolution to allow the dynamic monitoring of diverse biological processes that occur at the micro- and nanoscale. Emerging technologies for targeted diagnosis and therapy such as nanotherapeutics, microimplants, catheters, and small medical tools also need to be precisely located and monitored while performing their function inside the human body. In this work, we show for the first time the real-time tracking of moving single micro-objects below centimeter thick phantom tissue and ex vivo chicken breast, using multispectral optoacoustic tomography (MSOT). This technique combines the advantages of ultrasound imaging regarding depth and resolution with the molecular specificity of optical methods, thereby facilitating the discrimination between the spectral signatures of the micro-objects from those of intrinsic tissue molecules. The resulting MSOT signal is further improved in terms of contrast and specificity by coating the micro-objects' surface with gold nanorods, possessing a unique absorption spectrum, which facilitate their discrimination from surrounding biological tissues when translated to future in vivo settings.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstraße 20 , 01069 Dresden , Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstraße 20 , 01069 Dresden , Germany
| | - Jing Claussen
- iThera Medical GmbH , Zielstattstraße 13 , 81379 Munich , Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstraße 20 , 01069 Dresden , Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN) , TU Chemnitz , Reichenhainer Straße 10 , 09107 Chemnitz , Germany
- School of Science , TU Dresden , 01062 Dresden , Germany
| |
Collapse
|
12
|
Liu Z, Lan X. Microfluidic radiobioassays: a radiometric detection tool for understanding cellular physiology and pharmacokinetics. LAB ON A CHIP 2019; 19:2315-2339. [PMID: 31222194 DOI: 10.1039/c9lc00159j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The investigation of molecular uptake and its kinetics in cells is valuable for understanding the cellular physiological status, the observation of drug interventions, and the development of imaging agents and pharmaceuticals. Microfluidic radiobioassays, or microfluidic radiometric bioassays, constitute a radiometric imaging-on-a-chip technology for the assay of biological samples using radiotracers. From 2006 to date, microfluidic radiobioassays have shown advantages in many applications, including radiotracer characterization, enzyme activity radiobioassays, fast drug evaluation, single-cell imaging, facilitation of dynamic positron emission tomography (PET) imaging, and cellular pharmacokinetics (PK)/pharmacodynamics (PD) studies. These advantages lie in the minimized and integrated detection scheme, allowing real-time tracking of dynamic uptake, high sensitivity radiotracer imaging, and quantitative interpretation of imaging results. In this review, the basics of radiotracers, various radiometric detection methods, and applications of microfluidic radiobioassays will be introduced and summarized, and the potential applications and future directions of microfluidic radiobioassays will be forecasted.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China.
| | | |
Collapse
|
13
|
Moein MM, Nakao R, Amini N, Abdel-Rehim M, Schou M, Halldin C. Sample preparation techniques for radiometabolite analysis of positron emission tomography radioligands; trends, progress, limitations and future prospects. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Espagnet R, Frezza A, Martin JP, Hamel LA, Lechippey L, Beauregard JM, Després P. A CZT-based blood counter for quantitative molecular imaging. EJNMMI Phys 2017; 4:18. [PMID: 28577291 PMCID: PMC5457380 DOI: 10.1186/s40658-017-0184-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/02/2017] [Indexed: 11/30/2022] Open
Abstract
Background Robust quantitative analysis in positron emission tomography (PET) and in single-photon emission computed tomography (SPECT) typically requires the time-activity curve as an input function for the pharmacokinetic modeling of tracer uptake. For this purpose, a new automated tool for the determination of blood activity as a function of time is presented. The device, compact enough to be used on the patient bed, relies on a peristaltic pump for continuous blood withdrawal at user-defined rates. Gamma detection is based on a 20 × 20 × 15 mm3 cadmium zinc telluride (CZT) detector, read by custom-made electronics and a field-programmable gate array-based signal processing unit. A graphical user interface (GUI) allows users to select parameters and easily perform acquisitions. Results This paper presents the overall design of the device as well as the results related to the detector performance in terms of stability, sensitivity and energy resolution. Results from a patient study are also reported. The device achieved a sensitivity of 7.1 cps/(kBq/mL) and a minimum detectable activity of 2.5 kBq/ml for 18F. The gamma counter also demonstrated an excellent stability with a deviation in count rates inferior to 0.05% over 6 h. An energy resolution of 8% was achieved at 662 keV. Conclusions The patient study was conclusive and demonstrated that the compact gamma blood counter developed has the sensitivity and the stability required to conduct quantitative molecular imaging studies in PET and SPECT.
Collapse
Affiliation(s)
- Romain Espagnet
- Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec City, G1V 0A6, QC, Canada
| | - Andrea Frezza
- Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec City, G1V 0A6, QC, Canada
| | - Jean-Pierre Martin
- Department of Physics, Université de Montréal, C.P. 6128, Montréal, H3C 3J7, QC, Canada
| | - Louis-André Hamel
- Department of Physics, Université de Montréal, C.P. 6128, Montréal, H3C 3J7, QC, Canada
| | - Laëtitia Lechippey
- Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec City, G1V 0A6, QC, Canada
| | - Jean-Mathieu Beauregard
- Department of Medical Imaging and Research Center of CHU de Québec - Université Laval, Quebec City, G1R 2J6, QC, Canada.,Department of Radiology and Nuclear medicine and Cancer Research Center, Université Laval, Quebec CityQC, G1V 0A6, Canada
| | - Philippe Després
- Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec City, G1V 0A6, QC, Canada. .,Department of Radiation Oncology and Research Center of CHU de Québec - Université Laval, Quebec City, G1R 2J6, QC, Canada.
| |
Collapse
|
15
|
Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-Care Diagnostics: Recent Developments in a Connected Age. Anal Chem 2017; 89:102-123. [PMID: 27958710 PMCID: PMC5793870 DOI: 10.1021/acs.analchem.6b04630] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samiksha Nayak
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Nicole R. Blumenfeld
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Tassaneewan Laksanasopin
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
16
|
Huang CC, Wu CH, Huang YY, Tzen KY, Chen SF, Tsai ML, Wu HM. Performing Repeated Quantitative Small-Animal PET with an Arterial Input Function Is Routinely Feasible in Rats. J Nucl Med 2016; 58:611-616. [PMID: 27789717 DOI: 10.2967/jnumed.116.182402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/14/2016] [Indexed: 11/16/2022] Open
Abstract
Performing quantitative small-animal PET with an arterial input function has been considered technically challenging. Here, we introduce a catheterization procedure that keeps a rat physiologically stable for 1.5 mo. We demonstrated the feasibility of quantitative small-animal 18F-FDG PET in rats by performing it repeatedly to monitor the time course of variations in the cerebral metabolic rate of glucose (CMRglc). Methods: Aseptic surgery was performed on 2 rats. Each rat underwent catheterization of the right femoral artery and left femoral vein. The catheters were sealed with microinjection ports and then implanted subcutaneously. Over the next 3 wk, each rat underwent 18F-FDG quantitative small-animal PET 6 times. The CMRglc of each brain region was calculated using a 3-compartment model and an operational equation that included a k*4Results: On 6 mornings, we completed 12 18F-FDG quantitative small-animal PET studies on 2 rats. The rats grew steadily before and after the 6 quantitative small-animal PET studies. The CMRglc of the conscious brain (e.g., right parietal region, 99.6 ± 10.2 μmol/100 g/min; n = 6) was comparable to that for 14C-deoxyglucose autoradiographic methods. Conclusion: Maintaining good blood patency in catheterized rats is not difficult. Longitudinal quantitative small-animal PET imaging with an arterial input function can be performed routinely.
Collapse
Affiliation(s)
- Chi-Cheng Huang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Chun-Hu Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Yao Huang
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan; and
| | - Kai-Yuan Tzen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan; and
| | - Szu-Fu Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Miao-Ling Tsai
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsiao-Ming Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|