1
|
Knäusl B, Belotti G, Bertholet J, Daartz J, Flampouri S, Hoogeman M, Knopf AC, Lin H, Moerman A, Paganelli C, Rucinski A, Schulte R, Shimizu S, Stützer K, Zhang X, Zhang Y, Czerska K. A review of the clinical introduction of 4D particle therapy research concepts. Phys Imaging Radiat Oncol 2024; 29:100535. [PMID: 38298885 PMCID: PMC10828898 DOI: 10.1016/j.phro.2024.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mischa Hoogeman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Antje C Knopf
- Institut für Medizintechnik und Medizininformatik Hochschule für Life Sciences FHNW, Muttenz, Switzerland
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | - Astrid Moerman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University
| | - Shing Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Katarzyna Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
2
|
Jreige M, Darçot E, Lovis A, Simons J, Nicod-Lalonde M, Schaefer N, Buela F, Long O, Beigelman-Aubry C, Prior JO. Lung CT stabilization with high-frequency non-invasive ventilation (HF-NIV) and breath-hold (BH) in lung nodule assessment by PET/CT. Eur J Hybrid Imaging 2023; 7:16. [PMID: 37661217 PMCID: PMC10475447 DOI: 10.1186/s41824-023-00175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
PURPOSE To evaluate the effect of lung stabilization using high-frequency non-invasive ventilation (HF-NIV) and breath-hold (BH) techniques on lung nodule detection and texture assessment in PET/CT compared to a free-breathing (FB) standard lung CT acquisition in PET/CT. MATERIALS AND METHODS Six patients aged 65 ± 7 years, addressed for initial assessment of at least one suspicious lung nodule with 18F-FDG PET/CT, underwent three consecutive lung PET/CT acquisitions with FB, HF-NIV and BH. Lung nodules were assessed on all three CT acquisitions of the PET/CT and characterized for any size, volume and solid/sub-solid nature. RESULTS BH detected a significantly higher number of nodules (n = 422) compared to HF-NIV (n = 368) and FB (n = 191) (p < 0.001). The mean nodule size (mm) was 2.4 ± 2.1, 2.6 ± 1.9 and 3.2 ± 2.4 in BH, HF-NIV and FB, respectively, for long axis and 1.5 ± 1.3, 1.6 ± 1.2 and 2.1 ± 1.7 in BH, HF-NIV and FB, respectively, for short axis. Long- and short-axis diameters were significantly different between BH and FB (p < 0.001) and between HF-NIV and FB (p < 0.001 and p = 0.008), but not between BH and HF-NIV. A trend for higher volume was shown in FB compared to BH (p = 0.055) and HF-NIV (p = 0.068) without significant difference between BH and HF-NIV (p = 1). We found a significant difference in detectability of sub-solid nodules between the three acquisitions, with BH showing a higher number of sub-solid nodules (n = 128) compared to HF-NIV (n = 72) and FB (n = 44) (p = 0.002). CONCLUSION We observed a higher detection rate of pulmonary nodules on CT under BH or HF-NIV conditions applied to PET/CT than with FB. BH and HF-NIV demonstrated comparable texture assessment and performed better than FB in assessing size and volume. BH showed a better performance for detecting sub-solid nodules compared to HF-NIV and FB. The addition of BH or HF-NIV to PET/CT can help improve the detection and texture characterization of lung nodules by CT, therefore improving the accuracy of oncological lung disease assessment. The ease of use of BH and its added value should prompt its use in routine practice.
Collapse
Affiliation(s)
- Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Emeline Darçot
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alban Lovis
- Department of Pulmonology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Simons
- Department of Physiotherapy, Lausanne University Hospital, Lausanne, Switzerland
| | - Marie Nicod-Lalonde
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Flore Buela
- Department of Physiotherapy, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Long
- Department of Physiotherapy, Lausanne University Hospital, Lausanne, Switzerland
| | - Catherine Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Geerts L, Carvalho H, Jarahyan E, Mulier J. Impact of opioid free Anaesthesia versus opioid Anaesthesia on the immediate postoperative oxygenation after bariatric surgery: a prospective observational study. ACTA ANAESTHESIOLOGICA BELGICA 2022. [DOI: 10.56126/73.3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Introduction: Opioid induced respiratory depression (OIRD) is a preventable aetiology of postoperative respiratory depression with 85% of the episodes taking place in the first 24 postoperative hours. Due to altered respiratory functional metrics and frequently coexisting comorbidities, obese patients are at a particularly higher risk for such complications. The present study aimed to assess if an opioid-free anesthesia (OFA) was associated with a reduced immediate postoperative OIRD when compared to Opiod-based anesthesia (OA).
Methods: Obese patients presenting for bariatric surgery were consecutively included in a non-randomized fashion. Lung protective ventilation strategies applied in both groups. In the OA group, Sufentanil was used for intraoperative analgesia in a liberal fashion. In the OFA group, patients received a pre-induction dexmedetomidine loading, followed by a lidocaine, ketamine and dexmedetomidine bolus immediately before induction, further maintained throughout the intraoperative period. Plethysmographic saturations were obtained before induction as well as after extubation and in the Post-anesthesia care unit (PACU). Opioid requirement and Postoperative Nausea and Vomiting incidence were similarly registered.
Results: Thirty-four patients were included in the OFA group, and 30 in the OA group. No significant anthropometric and comorbidity differences were found between both groups. OFA patients had significantly lower pre-induction saturations after dexmedetomidine loading. No difference was found for post-extubation saturations as well as well as pre-PACU discharge. The need for supplemental oxygen at the PACU was higher in the OA group. Opioid requirement and cumulative consumption (MEDs) were significantly higher with OA. Conclusion: OFA was not associated with significant postoperative saturation changes but led to a lower need of postoperative supplemental oxygen therapy. OA led to higher opioid rescue need. No fatal respiratory complications were registered in both groups in the immediate postoperative period.
Collapse
|
4
|
Meier JG, Diab RH, Connor TM, Mawlawi OR. Impact of low injected activity on data driven respiratory gating for PET/CT imaging with continuous bed motion. J Appl Clin Med Phys 2022; 23:e13619. [PMID: 35481961 PMCID: PMC9121057 DOI: 10.1002/acm2.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Data driven respiratory gating (DDG) in positron emission tomography (PET) imaging extracts respiratory waveforms from the acquired PET data obviating the need for dedicated external devices. DDG performance, however, degrades with decreasing detected number of coincidence counts. In this paper, we assess the clinical impact of reducing injected activity on a new DDG algorithm designed for PET data acquired with continuous bed motion (CBM_DDG) by evaluating CBM_DDG waveforms, tumor quantification, and physician's perception of motion blur in resultant images. Forty patients were imaged on a Siemens mCT scanner in CBM mode. Reduced injected activity was simulated by generating list mode datasets with 50% and 25% of the original data (100%). CBM_DDG waveforms were compared to that of the original data over the range between the aortic arch and the center of the right kidney using the Pearson correlation coefficient (PCC). Tumor quantification was assessed by comparing the maximum standardized uptake value (SUVmax) and peak SUV (SUVpeak) of reconstructed images from the various list mode datasets using elastic motion deblurring (EMDB) reconstruction. Perceived motion blur was assessed by three radiologists of one lesion per patient on a continuous scale from no motion blur (0) to significant motion blur (3). The mean PCC of the 50% and 25% dataset waveforms was 0.74 ± 0.18 and 0.59 ± 0.25, respectively. In comparison to the 100% datasets, the mean SUVmax increased by 2.25% (p = 0.11) for the 50% datasets and by 3.91% (p = 0.16) for the 25% datasets, while SUVpeak changes were within ±0.25%. Radiologist evaluations of motion blur showed negligible changes with average values of 0.21, 0.3, and 0.28 for the 100%, 50%, and 25% datasets. Decreased injected activities degrades the resultant CBM_DDG respiratory waveforms; however this decrease has minimal impact on quantification and perceived image motion blur.
Collapse
Affiliation(s)
- Joseph G Meier
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, USA.,MD Anderson Cancer Center UTHealth Science Center, Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Radwan H Diab
- Department of Internal Medicine, Kansas University School of Medicine, Wichita, Kansas, USA
| | - Trevor M Connor
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, USA
| | - Osama R Mawlawi
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, USA.,MD Anderson Cancer Center UTHealth Science Center, Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
5
|
Percussion assisted radiation therapy in Hodgkin lymphoma allows a marked reduction in heart dose. Radiother Oncol 2020; 152:163-168. [PMID: 32448409 DOI: 10.1016/j.radonc.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Early-stage Hodgkin lymphoma (HL) is a highly curable disease but the treatment can induce late complications many years later. Irradiation of the healthy heart is inevitable during radiation treatment of mediastinal sites. We developed a novel method to induce a prolonged apnea-like state that can help decrease the dose to organs at risk during radiation therapy. We present the results of the first 8 HL patients treated routinely with percussion assisted radiation therapy (PART) in our clinic. MATERIAL AND METHODS We used a newly developed high-frequency non-invasive ventilation system to suppress respiratory motion for prolonged periods and push the heart away from the treated volume. RESULTS All 8 patients were able to rapidly learn the technique and had an advantage to be treated by PART. We lowered the mean heart dose by an average of 3 Gy with similar target coverage compared to a classical free breathing treatment plan. They were all treated for 15 radiotherapy sessions by PART without any notable side effects. CONCLUSIONS Percussion assisted radiation therapy can be used routinely to reduce the dose to the heart in Hodgkin lymphoma.
Collapse
|
6
|
Audag N, Van Ooteghem G, Liistro G, Salini A, Geets X, Reychler G. Intrapulmonary percussive ventilation leading to 20-minutes breath-hold potentially useful for radiation treatments. Radiother Oncol 2019; 141:292-295. [DOI: 10.1016/j.radonc.2019.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 11/15/2022]
|
7
|
Van Ooteghem G, Dasnoy-Sumell D, Lee JA, Geets X. Mechanically-assisted and non-invasive ventilation for radiation therapy: A safe technique to regularize and modulate internal tumour motion. Radiother Oncol 2019; 141:283-291. [PMID: 31653574 DOI: 10.1016/j.radonc.2019.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Current motion mitigation strategies, like margins, gating, and tracking, deal with geometrical uncertainties in the tumour position, induced by breathing during radiotherapy (RT). However, they often overlook motion variability in amplitude, respiratory rate, or baseline position, when breathing spontaneously. Consequently, this may negatively affect the delivered dose conformality in comparison to the plan. We previously demonstrated on volunteers that 3 different modes of mechanically-assisted and non-invasive ventilation (MANIV) may reduce variability in breathing motion. The volume-controlled mode (VC) constraints the amplitude and respiratory rate (RR) in physiologic condition. The shallow-controlled mode (SH), derived from VC, increases the RR and decreases amplitude. The slow-controlled mode (SL) induces repeated breath holds with constrained ventilation pressure. In this study, we compared these mechanical ventilation modes to spontaneous breathing or breath hold and assessed their tolerance and effects on internal tumour motion in patients receiving RT. MATERIAL AND METHODS The VC and SH modes were evaluated in ten patients with lung or liver cancers (cohort A). The SL mode was evaluated in 12 left breast cancer patients (cohort B). After a training and simulation session, the patients underwent 2 MRI sessions to analyze the internal motion of breast and tumour. RESULTS MANIV was well tolerated, without any adverse events or oxymetric changes, even in patients with respiratory comorbidities. In cohort A, when compared to spontaneous breathing (SP), VC reduced significantly inter-session variations of the tumour motion amplitude (p = 0.01), as well as intra- and inter-session variations of the RR (p < 0.05). As to SH, the RR increased, while its variations within and across sessions decreased when compared to SP (p < 0.001). SH reduced the median amplitude of the tumour motion by 6.1 mm or 38.2% (p ≤ 0.01) compared to VC. In cohort B, breast position stability over the end-inspiratory plateaus obtained spontaneously or with SL remained similar. Median duration of the plateaus in SL was 16.6 s. CONCLUSION MANIV is a safe and well tolerated ventilation technique for patients receiving radiotherapy. MANIV could thus make current motion mitigation strategies less critical and more robust. Clinical implementation might be considered, provided the ventilation mode is carefully selected with respect to the treatment indication and patient individualities.
Collapse
Affiliation(s)
- Geneviève Van Ooteghem
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Cliniques Universitaires Saint Luc, Department of Radiation Oncology, Brussels, Belgium.
| | - Damien Dasnoy-Sumell
- Université Catholique de Louvain, ImagX-R, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Louvain-La-Neuve, Belgium
| | - John Aldo Lee
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xavier Geets
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Cliniques Universitaires Saint Luc, Department of Radiation Oncology, Brussels, Belgium
| |
Collapse
|
8
|
Delacoste J, Dournes G, Dunet V, Ogna A, Noirez L, Simons J, Long O, Berchier G, Stuber M, Lovis A, Beigelman-Aubry C. Ultrashort echo time imaging of the lungs under high-frequency noninvasive ventilation: A new approach to lung imaging. J Magn Reson Imaging 2019; 50:1789-1797. [PMID: 31136048 PMCID: PMC6900075 DOI: 10.1002/jmri.26808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/16/2019] [Indexed: 01/06/2023] Open
Abstract
Background Although ultrashort echo time (UTE) sequences allow excellent assessment of lung parenchyma, image quality remains lower than that of computed tomography (CT). Purpose To investigate a high‐frequency noninvasive ventilation (HF‐NIV) technique allowing a stabilized inspiration and to compare image quality with current dedicated MR sequences. Study Type Prospective. Population Ten healthy volunteers. Field Strength/Sequence 3D radial UTE sequence at 1.5T. Assessment UTE‐HF‐NIV sequence was compared with UTE‐free‐breathing (UTE‐FB), reconstructed at end expiration (UTE‐Exp) and average (UTE‐Avg), and breath‐hold VIBE sequences. The distance from lung apex to the dome of the right hemidiaphragm was measured. Visual assessment of the visibility and sharpness of normal anatomical structures was carried out. Dedicated software also quantitatively evaluated vessel–lung and right lung–liver interface sharpness. Apparent signal ratio (Sr) and contrast ratios (Cr) were quantitatively evaluated. Statistical Tests Wilcoxon signed rank test for visual scores, paired t‐test for continuous variables, significance at P < 0.05. Results The distance between apex and the right hemidiaphragmatic dome was significantly larger (P < 0.001) with UTE‐HF‐NIV compared with UTE‐FB and VIBE acquisitions. Vessel and airway visibility had identical median visual scores with all UTE methods. Median visual scores for sharpness of vessels and airways were significantly higher (P < 0.001) with HF‐NIV (vessels = 3; airways = 2) than in UTE‐FB (vessels = 2; airways = 1) and VIBE (vessels = 1; airways = 1). Software‐based vessel sharpness evaluation resulted in larger values in 8/10 volunteers with UTE‐HF‐NIV (67.3 ± 9.8) compared with UTE‐Avg (62.3 ± 12.6) but the average difference was not significant (P = 0.28). The sharpness of the lung–liver interface was significantly higher (P < 0.001) with HF‐NIV (17.3 ± 5.3) compared with UTE‐Avg (14.1 ± 3.9). Significantly higher values (P < 0.01) of Sr and Cr were observed with UTE‐HF‐NIV compared with UTE‐FB and VIBE. Data Conclusion HF‐NIV allowing acquisition at full inspiration significantly improves image quality for lung imaging. This could offer the option to alternate some follow‐up CT studies by using this technique. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1789–1797.
Collapse
Affiliation(s)
- Jean Delacoste
- Department of Diagnostic and Interventional Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Gael Dournes
- Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Pessac, France
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Adam Ogna
- Department of Pneumology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Departement of Respiratory Medicine, Ospedale La Carità, Locarno, Switzerland
| | - Leslie Noirez
- Department of Pneumology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Julien Simons
- Department of Physiotherapy, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Olivier Long
- Department of Physiotherapy, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Grégoire Berchier
- Department of Diagnostic and Interventional Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Alban Lovis
- Department of Pneumology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Catherine Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
9
|
Tsoutsou P, Montay-Gruel P, Vozenin MC. The Era of Modern Radiation Therapy: Innovations to Spare Normal Tissues. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_70-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
10
|
Sala IM, Nair GB, Maurer B, Guerrero TM. High frequency percussive ventilation for respiratory immobilization in radiotherapy. Tech Innov Patient Support Radiat Oncol 2018; 9:8-12. [PMID: 32095589 PMCID: PMC7033809 DOI: 10.1016/j.tipsro.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 11/30/2022] Open
Abstract
HFPV maybe a tool for immobilizing thoracic targets in radiotherapy. The procedure itself was well tolerated and well complied. Chest wall motion was significantly reduced by greater than 60%. HFPV can be greatly advantageous, particularly for SBRT and PBS proton therapy. Duty cycle under HFPV was significantly higher than conventional methods. The appropriate interface can lead to extensive HFPV prolonged times.
High frequency percussive ventilation (HFPV) employs high frequency low tidal volumes (100–400 bursts/min) to provide respiration in awake patients while simultaneously reducing respiratory motion. The purpose of this study is to evaluate HFPV as a technique for respiratory motion immobilization in radiotherapy. In this study fifteen healthy volunteers (age 30–75 y) underwent HFPV using three different oral interfaces. We evaluated each HFPV oral interface device for compliance, ease of use, comfort, geometric interference, minimal chest wall motion, duty cycle and prolonged percussive time. Their chest wall motion was monitored using an external respiratory motion laser system. The percussive ventilations were delivered via an air driven pneumatic system. All volunteers were monitored for PO2 and tc-CO2 with a pulse oximeter and CO2 Monitoring System. A total of N = 62 percussive sessions were analyzed from the external respiratory motion laser system. Chest-wall motion was well tolerated and drastically reduced using HFPV in each volunteer evaluated. As a result, we believe HFPV may provide thoracic immobilization during radiotherapy, particularly for SBRT and pencil beam scanning proton therapy.
Collapse
Affiliation(s)
- Ina M Sala
- William Beaumont Hospital, Department of Radiation Oncology, Royal Oak, MI, United States.,Wayne State University, Karmanos Cancer Center, Detroit, MI, United States
| | - Girish B Nair
- William Beaumont Hospital, Department of Pulmonary Critical Care, Royal Oak, MI, United States.,Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Beverly Maurer
- William Beaumont Hospital, Department of Pulmonary Physiology, Royal Oak, MI, United States
| | - Thomas M Guerrero
- William Beaumont Hospital, Department of Radiation Oncology, Royal Oak, MI, United States.,Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
11
|
Effect of continuous positive airway pressure administration during lung stereotactic ablative radiotherapy: a comparative planning study. Strahlenther Onkol 2018; 194:591-599. [DOI: 10.1007/s00066-018-1278-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
|
12
|
Ogna A, Bernasconi M, Belmondo B, Long O, Simons J, Peguret N, Heinzer R, Nicod LP, Bourhis J, Lovis A. Prolonged Apnea Supported by High-Frequency Noninvasive Ventilation: A Pilot Study. Am J Respir Crit Care Med 2017; 195:958-960. [PMID: 28362201 DOI: 10.1164/rccm.201608-1572le] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Adam Ogna
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| | - Maurizio Bernasconi
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| | - Bastien Belmondo
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| | - Olivier Long
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| | - Julien Simons
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| | - Nicolas Peguret
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| | - Raphaël Heinzer
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| | - Laurent P Nicod
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| | - Jean Bourhis
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| | - Alban Lovis
- 1 University Hospital of Lausanne (CHUV - Centre Hospitalier Universitaire Vaudois) Lausanne, Switzerland
| |
Collapse
|
13
|
Chen DL, Cheriyan J, Chilvers ER, Choudhury G, Coello C, Connell M, Fisk M, Groves AM, Gunn RN, Holman BF, Hutton BF, Lee S, MacNee W, Mohan D, Parr D, Subramanian D, Tal-Singer R, Thielemans K, van Beek EJR, Vass L, Wellen JW, Wilkinson I, Wilson FJ. Quantification of Lung PET Images: Challenges and Opportunities. J Nucl Med 2017; 58:201-207. [PMID: 28082432 DOI: 10.2967/jnumed.116.184796] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023] Open
Abstract
Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with 18F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating 18F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.
Collapse
Affiliation(s)
- Delphine L Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph Cheriyan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gourab Choudhury
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Martin Connell
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Fisk
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ashley M Groves
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Roger N Gunn
- Imanova Ltd., London, United Kingdom.,Department of Medicine, Imperial College London, London, United Kingdom
| | - Beverley F Holman
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Brian F Hutton
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Sarah Lee
- Medical Image Analysis Consultant, London, United Kingdom
| | - William MacNee
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Divya Mohan
- Clinical Discovery, Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania
| | - David Parr
- University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | | | - Ruth Tal-Singer
- Clinical Discovery, Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Edwin J R van Beek
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Laurence Vass
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy W Wellen
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts; and
| | - Ian Wilkinson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Frederick J Wilson
- Experimental Medicine Imaging, GlaxoSmithKline, Stevenage, United Kingdom
| |
Collapse
|