1
|
Herscovitch P. Regulatory Agencies and PET/CT Imaging in the Clinic. Curr Cardiol Rep 2022; 24:1361-1371. [PMID: 35913674 PMCID: PMC9340745 DOI: 10.1007/s11886-022-01749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW The regulatory steps necessary to bring new PET radiopharmaceuticals to the clinic will be reviewed. The US Food and Drug Administration (FDA) provides approval to manufacture and use diagnostic radiopharmaceuticals, including those for cardiovascular PET/CT. Medicare not only provides insurance reimbursement for imaging procedures for its beneficiaries but also sets an example for third-party insurers to cover these procedures. RECENT FINDINGS FDA provides extensive guidance for performing studies to obtain the safety and efficacy data needed to approve PET radiopharmaceuticals, and the pace of approval has recently increased. There also has been considerable progress in insurance coverage for PET by Medicare. Several promising agents for cardiovascular PET imaging are in the development pipeline. Challenges remain, however, including low levels of reimbursement and the application of appropriate use criteria for imaging procedures. It is important for cardiologists to understand the regulatory steps involved in translating PET radiopharmaceuticals to the clinic. Recent progress in both FDA approvals and Medicare coverage should facilitate the clinical use of new PET agents for molecular imaging of the heart.
Collapse
Affiliation(s)
- Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Rm 1C-495, 10 Center DR, MSC1180, Bethesda, MD, 20892-1180, USA.
| |
Collapse
|
2
|
The Unique Pharmacometrics of Small Molecule Therapeutic Drug Tracer Imaging for Clinical Oncology. Cancers (Basel) 2020; 12:cancers12092712. [PMID: 32971780 PMCID: PMC7563483 DOI: 10.3390/cancers12092712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary New clinical radiology scans using trace amounts of therapeutic cancer drugs labeled with radioisotope injected into patients can provide oncologists with fundamentally unique insights about drug delivery to tumors. This new application of radiology aims to improve how cancer drugs are used, towards improving patient outcomes. The article reviews published clinical research in this important new field. Abstract Translational development of radiolabeled analogues or isotopologues of small molecule therapeutic drugs as clinical imaging biomarkers for optimizing patient outcomes in targeted cancer therapy aims to address an urgent and recurring clinical need in therapeutic cancer drug development: drug- and target-specific biomarker assays that can optimize patient selection, dosing strategy, and response assessment. Imaging the in vivo tumor pharmacokinetics and biomolecular pharmacodynamics of small molecule cancer drugs offers patient- and tumor-specific data which are not available from other pharmacometric modalities. This review article examines clinical research with a growing pharmacopoeia of investigational small molecule cancer drug tracers.
Collapse
|
3
|
Asadian S, Mirzaei H, Kalantari BA, Davarpanah MR, Mohamadi M, Shpichka A, Nasehi L, Es HA, Timashev P, Najimi M, Gheibi N, Hassan M, Vosough M. β-radiating radionuclides in cancer treatment, novel insight into promising approach. Pharmacol Res 2020; 160:105070. [PMID: 32659429 DOI: 10.1016/j.phrs.2020.105070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Targeted radionuclide therapy, known as molecular radiotherapy is a novel therapeutic module in cancer medicine. β-radiating radionuclides have definite impact on target cells via interference in cell cycle and particular signalings that can lead to tumor regression with minimal off-target effects on the surrounding tissues. Radionuclides play a remarkable role not only in apoptosis induction and cell cycle arrest, but also in the amelioration of other characteristics of cancer cells. Recently, application of novel β-radiating radionuclides in cancer therapy has been emerged as a promising therapeutic modality. Several investigations are ongoing to understand the underlying molecular mechanisms of β-radiating elements in cancer medicine. Based on the radiation dose, exposure time and type of the β-radiating element, different results could be achieved in cancer cells. It has been shown that β-radiating radioisotopes block cancer cell proliferation by inducing apoptosis and cell cycle arrest. However, physical characteristics of the β-radiating element (half-life, tissue penetration range, and maximum energy) and treatment protocol determine whether tumor cells undergo cell cycle arrest, apoptosis or both and to which extent. In this review, we highlighted novel therapeutic effects of β-radiating radionuclides on cancer cells, particularly apoptosis induction and cell cycle arrest.
Collapse
Affiliation(s)
- Samieh Asadian
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Morteza Mohamadi
- Department of Physical Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Leila Nasehi
- Department of Medical Laboratory Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia.
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Shields AF, Jacobs PM, Sznol M, Graham MM, Germain RN, Lum LG, Jaffee EM, de Vries EGE, Nimmagadda S, Van den Abbeele AD, Leung DK, Wu AM, Sharon E, Shankar LK. Immune Modulation Therapy and Imaging: Workshop Report. J Nucl Med 2017; 59:410-417. [PMID: 28818991 DOI: 10.2967/jnumed.117.195610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
A workshop at the National Cancer Institute on May 2, 2016, considered the current state of imaging in assessment of immunotherapy. Immunotherapy has shown some remarkable and prolonged responses in the treatment of tumors. However, responses are variable and frequently delayed, complicating the evaluation of new immunotherapy agents and customizing treatment for individual patients. Early anatomic imaging may show that a tumor has increased in size, but this could represent pseudoprogression. On the basis of imaging, clinicians must decide if they should stop, pause, or continue treatment. Other imaging technologies and approaches are being developed to improve the measurement of response in patients receiving immunotherapy. Imaging methods that are being evaluated include radiomic methods using CT, MRI, and 18F-FDG PET, as well as new radiolabeled small molecules, antibodies, and antibody fragments to image the tumor microenvironment, immune status, and changes over the course of therapy. Current studies of immunotherapy can take advantage of these available imaging options to explore and validate their use. Collection of CT, PET, and MR images along with outcomes from trials is critical to develop improved methods of assessment.
Collapse
Affiliation(s)
- Anthony F Shields
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan .,National Cancer Institute, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | - Annick D Van den Abbeele
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Anna M Wu
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elad Sharon
- National Cancer Institute, Bethesda, Maryland
| | | |
Collapse
|
5
|
Guldbrandsen KF, Hendel HW, Langer SW, Fischer BM. Nuclear Molecular Imaging Strategies in Immune Checkpoint Inhibitor Therapy. Diagnostics (Basel) 2017; 7:diagnostics7020023. [PMID: 28430133 PMCID: PMC5489943 DOI: 10.3390/diagnostics7020023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitor therapy (ICT) is a new treatment strategy developed for the treatment of cancer. ICT inhibits pathways known to downregulate the innate immune response to cancer cells. These drugs have been shown to be effective in the treatment of a variety of cancers, including metastatic melanoma and lung cancer. Challenges in response evaluation of patients in ICT have risen as immune related side effects and immune cell infiltration may be confused with progressive disease. Furthermore, the timing of the evaluation scan may be challenged by relatively slow responses. To overcome this, new response criteria for evaluating these patients with morphologic imaging have been proposed. The aim of this paper is to review and discuss the current evidence for the use of molecular imaging, e.g., PET/CT (Positron Emission Tomography/Computer Tomography) with 18F-Fluorodeoxyglucoes (FDG) as an alternative imaging method for monitoring patients undergoing ICT. Following the currently available evidence, this review will primarily focus on patients with malignant melanoma.
Collapse
Affiliation(s)
- Kasper F Guldbrandsen
- Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital Hillerød, 3400 Hillerød, Denmark.
| | - Helle W Hendel
- Department of Clinical Physiology and Nuclear Medicine, Herlev and Gentofte Hospital, 2750 Herlev, Denmark.
| | - Seppo W Langer
- Department of Oncology 5073, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Barbara M Fischer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|