1
|
Domingo E, Marques P, Francisco V, Piqueras L, Sanz MJ. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res 2024; 200:107058. [PMID: 38218355 DOI: 10.1016/j.phrs.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.
Collapse
Affiliation(s)
- Elena Domingo
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Vera Francisco
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| | - Maria-Jesus Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| |
Collapse
|
2
|
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B 2023; 13:4442-4460. [PMID: 37969739 PMCID: PMC10638499 DOI: 10.1016/j.apsb.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chenxing Fu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
3
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
4
|
Harmand TJ, Islam A, Pishesha N, Ploegh HL. Nanobodies as in vivo, non-invasive, imaging agents. RSC Chem Biol 2021; 2:685-701. [PMID: 34212147 PMCID: PMC8190910 DOI: 10.1039/d1cb00023c] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In vivo imaging has become in recent years an incredible tool to study biological events and has found critical applications in diagnostic medicine. Although a lot of efforts and applications have been achieved using monoclonal antibodies, other types of delivery agents are being developed. Among them, VHHs, antigen binding fragments derived from camelid heavy chain-only antibodies, also known as nanobodies, have particularly attracted attention. Indeed, their stability, fast clearance, good tissue penetration, high solubility, simple cloning and recombinant production make them attractive targeting agents for imaging modalities such as PET, SPECT or Infra-Red. In this review, we discuss the pioneering work that has been carried out using VHHs and summarize the recent developments that have been made using nanobodies for in vivo, non-invasive, imaging.
Collapse
Affiliation(s)
- Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
| | - Ashraful Islam
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
- Department of Clinical Medicine, UiT The Arctic University of Norway Tromso Norway
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
- Society of Fellows, Harvard University Cambridge MA USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard Cambridge MA USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
| |
Collapse
|
5
|
Liu M, Li L, Jin D, Liu Y. Nanobody-A versatile tool for cancer diagnosis and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1697. [PMID: 33470555 DOI: 10.1002/wnan.1697] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
In spite of the successful use of monoclonal antibodies (mAbs) in clinic for tumor treatment, their applications are still hampered in therapeutic development due to limitations, such as tumor penetration and high cost of manufacture. Nanobody, a single domain antibody that holds the strong antigen targeting and binding capacity, has demonstrated various advantages relative to antibody. Nanobody is considered as a next-generation of antibody-derived tool in the antigen related recognition and modulation. A number of nanobodies have been developed and evaluated in different stages of clinical trials for cancer treatment. Here we summarized the current progress of nanobody in tumor diagnosis and therapeutics, particularly on the conjugation of nanobody with functional moieties. The nanobody conjugation of diagnostic agents, such as radionuclide and optical tracers, can achieve specific tumor imaging. The nanobody-drug conjugates can enhance the therapeutic efficacy of anti-tumor drugs and reduce the adverse effects. The decoration of nanobody on nanodrug delivery systems can further improve the drug targeting to specific tumors. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Li Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Duo Jin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
7
|
VCAM-1 Target in Non-Invasive Imaging for the Detection of Atherosclerotic Plaques. BIOLOGY 2020; 9:biology9110368. [PMID: 33138124 PMCID: PMC7692297 DOI: 10.3390/biology9110368] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Cardiovascular diseases are the first cause of morbimortality worldwide. They are mainly caused by atherosclerosis, with progressive plaque formation in the arterial wall. In this context, several imaging techniques have been developed to screen, detect and quantify atherosclerosis. Early screening improves primary prevention and promotes the prescription of adequate medication before adverse clinical events. In this review, we focus on the imaging of vascular cell adhesion molecule-1, an adhesion molecule involved in the first stages of the development of atherosclerosis. This molecule could therefore be a promising target to detect early atherosclerosis non-invasively. Potential clinical applications are critically discussed. Abstract Atherosclerosis is a progressive chronic arterial disease characterised by atheromatous plaque formation in the intima of the arterial wall. Several invasive and non-invasive imaging techniques have been developed to detect and characterise atherosclerosis in the vessel wall: anatomic/structural imaging, functional imaging and molecular imaging. In molecular imaging, vascular cell adhesion molecule-1 (VCAM-1) is a promising target for the non-invasive detection of atherosclerosis and for the assessment of novel antiatherogenic treatments. VCAM-1 is an adhesion molecule expressed on the activated endothelial surface that binds leucocyte ligands and therefore promotes leucocyte adhesion and transendothelial migration. Hence, for several years, there has been an increase in molecular imaging methods for detecting VCAM-1 in MRI, PET, SPECT, optical imaging and ultrasound. The use of microparticles of iron oxide (MPIO), ultrasmall superparamagnetic iron oxide (USPIO), microbubbles, echogenic immunoliposomes, peptides, nanobodies and other nanoparticles has been described. However, these approaches have been tested in animal models, and the remaining challenge is bench-to-bedside development and clinical applicability.
Collapse
|
8
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Niedzielski M, Broncel M, Gorzelak-Pabiś P, Woźniak E. New possible pharmacological targets for statins and ezetimibe. Biomed Pharmacother 2020; 129:110388. [PMID: 32559626 DOI: 10.1016/j.biopha.2020.110388] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 06/07/2020] [Indexed: 12/25/2022] Open
Abstract
Statin therapy is the gold standard in the treatment of dyslipidemia. Understanding the mechanisms of action of these drugs provides an opportunity to define new therapeutic goals for pharmacotherapy in patients with atherosclerotic lesions. The present review indicates the existence of previously unknown therapeutic targets for statins, such as Krüppel-like Factor 2 (KLF-2), Cystathionine γ lyase (CSE) and the microRNA regulating eNOS activity and synthesis; nuclear PXR receptor and EB transcription factor regulating Inflammasome NLRP3 activity; the Dickkopf-related protein 1 (DKK-1), which inhibits the WNT signalling pathway; the peroxisome proliferator-activated receptor (PPAR-γ) in vascular smooth muscle cells (VSMCs), which regulates the cell cycle, and the ERK5-Nrf2 pathway, which reduces the level of harmful advanced glycation end-products (AGE) in VSMCs during diabetic vasculopathy. Importantly, our review includes a number of promising discoveries, specifically those related to the effects of miR-221, miR-222 and miR-27b on the structure, synthesis and activity of eNOS, such as microRNA-based therapies, which offer promise in future targeted therapies. In contrast to numerous experiments confirming the pleiotropic effect of statins, there is still insufficient evidence on the pleiotropic effect of ezetimibe, which goes beyond its basic inhibitory effect on intestinal cholesterol absorption. However, recent studies indicate that this effect is limited to inhibiting macrophage migration, decreasing VCAM-1 expression and reducing the levels of reactive oxygen species. Defining new therapeutic goals for pharmacotherapy in patients with atherosclerotic lesions and ensuring effective treatment of dyslipidemia and its associated cardiovascular complications requires a thorough understanding of both the mechanisms of action of these drugs and of atherosclerosis itself.
Collapse
Affiliation(s)
- Mateusz Niedzielski
- Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Marlena Broncel
- Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Paulina Gorzelak-Pabiś
- Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Ewelina Woźniak
- Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Kniaziewicza 1/5, 91-347 Lodz, Poland.
| |
Collapse
|
10
|
Bala G, Crauwels M, Blykers A, Remory I, Marschall ALJ, Dübel S, Dumas L, Broisat A, Martin C, Ballet S, Cosyns B, Caveliers V, Devoogdt N, Xavier C, Hernot S. Radiometal-labeled anti-VCAM-1 nanobodies as molecular tracers for atherosclerosis - impact of radiochemistry on pharmacokinetics. Biol Chem 2019; 400:323-332. [PMID: 30240352 DOI: 10.1515/hsz-2018-0330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Radiolabeling of nanobodies with radiometals by chelation has the advantage of being simple, fast and easy to implement in clinical routine. In this study, we validated 68Ga/111In-labeled anti-VCAM-1 nanobodies as potential radiometal-based tracers for molecular imaging of atherosclerosis. Both showed specific targeting of atherosclerotic lesions in ApoE-/- mice. Nevertheless, uptake in lesions and constitutively VCAM-1 expressing organs was lower than previously reported for the 99mTc-labeled analog. We further investigated the impact of different radiolabeling strategies on the in vivo biodistribution of nanobody-based tracers. Comparison of the pharmacokinetics between 68Ga-, 18F-, 111In- and 99mTc-labeled anti-VCAM-1 nanobodies showed highest specific uptake for 99mTc-nanobody at all time-points, followed by the 68Ga-, 111In- and 18F-labeled tracer. No correlation was found with the estimated number of radioisotopes per nanobody, and mimicking specific activity of other radiolabeling methods did not result in an analogous biodistribution. We also demonstrated specificity of the tracer using mice with a VCAM-1 knocked-down phenotype, while showing for the first time the in vivo visualization of a protein knock-down using intrabodies. Conclusively, the chosen radiochemistry does have an important impact on the biodistribution of nanobodies, in particular on the specific targeting, but differences are not purely due to the tracer's specific activity.
Collapse
Affiliation(s)
- Gezim Bala
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.,Department of Cardiology, UZBrussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Maxine Crauwels
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.,Cellular and Molecular Immunology, CMIM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Anneleen Blykers
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Isabel Remory
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.,Department of Anesthesiology, UZBrussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Andrea L J Marschall
- Biotechnology and Bioinformatics, Institute of Biochemistry, Technische Universität Braunschweig, Spielmannstraβe 7, D-38106 Braunschweig, Germany
| | - Stefan Dübel
- Biotechnology and Bioinformatics, Institute of Biochemistry, Technische Universität Braunschweig, Spielmannstraβe 7, D-38106 Braunschweig, Germany
| | - Laurent Dumas
- Inserm U1039, LRB, Université Grenoble Alpes, Domaine de la Merci, F-38700 La Tonche, France
| | - Alexis Broisat
- Inserm U1039, LRB, Université Grenoble Alpes, Domaine de la Merci, F-38700 La Tonche, France
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Bernard Cosyns
- Department of Cardiology, UZBrussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Vicky Caveliers
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.,Department of Nuclear Medicine, UZBrussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Catarina Xavier
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Sophie Hernot
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| |
Collapse
|
11
|
Punjabi M, Xu L, Ochoa-Espinosa A, Kosareva A, Wolff T, Murtaja A, Broisat A, Devoogdt N, Kaufmann BA. Ultrasound Molecular Imaging of Atherosclerosis With Nanobodies: Translatable Microbubble Targeting Murine and Human VCAM (Vascular Cell Adhesion Molecule) 1. Arterioscler Thromb Vasc Biol 2019; 39:2520-2530. [PMID: 31597443 DOI: 10.1161/atvbaha.119.313088] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Contrast-enhanced ultrasound molecular imaging (CEUMI) of endothelial expression of VCAM (vascular cell adhesion molecule)-1 could improve risk stratification for atherosclerosis. The microbubble contrast agents developed for preclinical studies are not suitable for clinical translation. Our aim was to characterize and validate a microbubble contrast agent using a clinically translatable single-variable domain immunoglobulin (nanobody) ligand. Approach and Results: Microbubble with a nanobody targeting VCAM-1 (MBcAbVcam1-5) and microbubble with a control nanobody (MBVHH2E7) were prepared and characterized in vitro. Attachment efficiency to VCAM-1 under continuous and pulsatile flow was investigated using activated murine endothelial cells. In vivo CEUMI of the aorta was performed in atherosclerotic double knockout and wild-type mice after injection of MBcAbVcam1-5 and MBVHH2E7. Ex vivo CEUMI of human endarterectomy specimens was performed in a closed-loop circulation model. The surface density of the nanobody ligand was 3.5×105 per microbubble. Compared with MBVHH2E7, MBcAbVcam1-5 showed increased attachment under continuous flow with increasing shear stress of 1-8 dynes/cm2 while under pulsatile flow attachment occurred at higher shear stress. CEUMI in double knockout mice showed signal enhancement for MBcAbVcam1-5 in early (P=0.0003 versus MBVHH2E7) and late atherosclerosis (P=0.007 versus MBVHH2E7); in wild-type mice, there were no differences between MBcAbVcam1-5 and MBVHH2E7. CEUMI in human endarterectomy specimens showed a 100% increase in signal for MBcAbVcam1-5versus MBVHH2E7 (20.6±27.7 versus 9.6±14.7, P=0.0156). CONCLUSIONS CEUMI of the expression of VCAM-1 is feasible in murine models of atherosclerosis and on human tissue using a clinically translatable microbubble bearing a VCAM-1 targeted nanobody.
Collapse
Affiliation(s)
- Mukesh Punjabi
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.)
| | - Lifen Xu
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.)
| | - Amanda Ochoa-Espinosa
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.)
| | - Alexandra Kosareva
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.)
| | - Thomas Wolff
- Department of Vascular Surgery (T.W., A.M.), University Hospital and University of Basel, Switzerland
| | - Ahmed Murtaja
- Department of Vascular Surgery (T.W., A.M.), University Hospital and University of Basel, Switzerland
| | - Alexis Broisat
- University Grenoble Alpes, Inserm, U1039, LRB, France (A.B.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Belgium (N.D.)
| | - Beat A Kaufmann
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.).,Department of Cardiology (B.A.K.), University Hospital and University of Basel, Switzerland
| |
Collapse
|
12
|
Montemagno C, Dumas L, Cavaillès P, Ahmadi M, Bacot S, Debiossat M, Soubies A, Djaïleb L, Leenhardt J, Leiris ND, Dufies M, Pagès G, Hernot S, Devoogdt N, Perret P, Riou L, Fagret D, Ghezzi C, Broisat A. In Vivo Assessment of VCAM-1 Expression by SPECT/CT Imaging in Mice Models of Human Triple Negative Breast Cancer. Cancers (Basel) 2019; 11:cancers11071039. [PMID: 31340603 PMCID: PMC6678795 DOI: 10.3390/cancers11071039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022] Open
Abstract
Recent progress in breast cancer research has led to the identification of Vascular Cell Adhesion Molecule-1 (VCAM-1) as a key actor of metastatic colonization. VCAM-1 promotes lung-metastases and is associated with clinical early recurrence and poor outcome in triple negative breast cancer (TNBC). Our objective was to perform the in vivo imaging of VCAM-1 in mice models of TNBC. The Cancer Genomic Atlas (TCGA) database was analyzed to evaluate the prognostic role of VCAM-1 in TNBC. MDA-MB-231 (VCAM-1+) and control HCC70 (VCAM-1-) TNBC cells were subcutaneously xenografted in mice and VCAM-1 expression was assessed in vivo by single-photon emission computed tomography (SPECT) imaging using 99mTc-cAbVCAM1-5. Then, MDA-MB-231 cells were intravenously injected in mice and VCAM-1 expression in lung metastasis was assessed by SPECT imaging after 8 weeks. TCGA analysis showed that VCAM-1 is associated with a poor prognosis in TNBC patients. In subcutaneous tumor models, 99mTc-cAbVCAM1-5 uptake was 2-fold higher in MDA-MB-231 than in HCC70 (p < 0.01), and 4-fold higher than that of the irrelevant control (p < 0.01). Moreover, 99mTc-cAbVCAM1-5 uptake in MDA-MB-231 lung metastases was also higher than that of 99mTc-Ctl (p < 0.05). 99mTc-cAbVCAM1-5 is therefore a suitable tool to evaluate the role of VCAM-1 as a marker of tumor aggressiveness of TNBC.
Collapse
Affiliation(s)
- Christopher Montemagno
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Laurent Dumas
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
- Advanced Accelator Applications, 01630 Saint-Genis-Pouilly, France
| | - Pierre Cavaillès
- Natural Barriers and Infectiosity, Universite Grenoble Alpes, CNRS, CHU Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France
| | - Mitra Ahmadi
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Sandrine Bacot
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Marlène Debiossat
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Audrey Soubies
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Loic Djaïleb
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Julien Leenhardt
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Nicolas de Leiris
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Maeva Dufies
- Biomedical Department, Centre Scientifique de Monaco, 980000 Monaco, Monaco
| | - Gilles Pagès
- Biomedical Department, Centre Scientifique de Monaco, 980000 Monaco, Monaco
- Institute for Research on Cancer and Aging of Nice, Universite Cote d'Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 061489 Nice, France
| | - Sophie Hernot
- Laboratory of In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklan 103, B-1090 Brussels, Belgium
| | - Nick Devoogdt
- Laboratory of In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklan 103, B-1090 Brussels, Belgium
| | - Pascale Perret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Laurent Riou
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Catherine Ghezzi
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Alexis Broisat
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB, 38000 Grenoble, France.
| |
Collapse
|
13
|
Meester EJ, Krenning BJ, de Swart J, Segbers M, Barrett HE, Bernsen MR, Van der Heiden K, de Jong M. Perspectives on Small Animal Radionuclide Imaging; Considerations and Advances in Atherosclerosis. Front Med (Lausanne) 2019; 6:39. [PMID: 30915335 PMCID: PMC6421263 DOI: 10.3389/fmed.2019.00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
This review addresses nuclear SPECT and PET imaging in small animals in relation to the atherosclerotic disease process, one of our research topics of interest. Imaging of atherosclerosis in small animal models is challenging, as it operates at the limits of current imaging possibilities regarding sensitivity, and spatial resolution. Several topics are discussed, including technical considerations that apply to image acquisition, reconstruction, and analysis. Moreover, molecules developed for or applied in these small animal nuclear imaging studies are listed, including target-directed molecules, useful for imaging organs or tissues that have elevated expression of the target compared to other tissues, and molecules that serve as substrates for metabolic processes. Differences between animal models and human pathophysiology that should be taken into account during translation from animal to patient as well as differences in tracer behavior in animal vs. man are also described. Finally, we give a future outlook on small animal radionuclide imaging in atherosclerosis, followed by recommendations. The challenges and solutions described might be applicable to other research fields of health and disease as well.
Collapse
Affiliation(s)
- Eric J Meester
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - B J Krenning
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - J de Swart
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - M Segbers
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - H E Barrett
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - M R Bernsen
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - K Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Debie P, Devoogdt N, Hernot S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies (Basel) 2019; 8:E12. [PMID: 31544818 PMCID: PMC6640687 DOI: 10.3390/antib8010012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging is paving the way towards noninvasive detection, staging, and treatment follow-up of diseases such as cancer and inflammation-related conditions. Monoclonal antibodies have long been one of the staples of molecular imaging tracer design, although their long blood circulation and high nonspecific background limits their applicability. Nanobodies, unique antibody-binding fragments derived from camelid heavy-chain antibodies, have excellent properties for molecular imaging as they are able to specifically find their target early after injection, with little to no nonspecific background. Nanobody-based tracers using either nuclear or fluorescent labels have been heavily investigated preclinically and are currently making their way into the clinic. In this review, we will discuss different important factors in nanobody-tracer design, as well as the current state of the art regarding their application for nuclear and fluorescent imaging purposes. Furthermore, we will discuss how nanobodies can also be exploited for molecular therapy applications such as targeted radionuclide therapy and photodynamic therapy.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Nick Devoogdt
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
15
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Koenig W, Giovas P, Nicholls SJ. Combining cholesterol-lowering strategies with imaging data: a visible benefit? Eur J Prev Cardiol 2018; 26:365-379. [PMID: 30160512 DOI: 10.1177/2047487318798059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coronary artery disease is characterised by the development of atherosclerotic plaques and is associated with significant morbidity and mortality on a global level. However, many patients with atherosclerosis are asymptomatic and the prediction of acute coronary events is challenging. The role of imaging studies in characterising plaque morphology and stability is emerging as a valuable prognostic tool, while providing evidence for the beneficial effects of cholesterol-lowering therapy on plaque burden. This review provides an overview of contemporary studies describing the value of imaging strategies for atherosclerotic plaques. Coronary angiography is commonly used in the clinical setting, but requires a significant radiation dose (similar to computed tomography). Magnetic resonance imaging evaluation of coronary vessels would avoid exposure to ionising radiation, but is not yet feasible due to motion artefacts. The roles of alternative imaging techniques, including grey-scale intravascular ultrasound, optical coherence tomography and near-infrared spectroscopy have emerged in recent years. In particular, grey-scale intravascular ultrasound has been effectively applied to detect changes in plaque burden and features of plaques predictive of rupture, as well as plaque characteristics during cholesterol-lowering therapy, providing novel insights into factors that may contribute to treatment effectiveness. Challenges and limitations to the use of imaging techniques are considered in this context, along with future imaging strategies.
Collapse
Affiliation(s)
- Wolfgang Koenig
- 1 Deutsches Herzzentrum München, Technische Universität München, Germany.,2 DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany
| | | | - Stephen J Nicholls
- 4 South Australian Health and Medical Research Institute, University of Adelaide, Australia
| |
Collapse
|
17
|
Montemagno C, Bacot S, Ahmadi M, Kerfelec B, Baty D, Debiossat M, Soubies A, Perret P, Riou L, Fagret D, Broisat A, Ghezzi C. Preclinical Evaluation of Mesothelin-Specific Ligands for SPECT Imaging of Triple-Negative Breast Cancer. J Nucl Med 2018; 59:1056-1062. [PMID: 29572256 DOI: 10.2967/jnumed.117.203489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/28/2017] [Indexed: 01/19/2023] Open
Abstract
Mesothelin is a cell-surface glycoprotein restricted to mesothelial cells overexpressed in several types of cancer, including triple-negative breast cancer not responding to trastuzumab or hormone-based therapies. Mesothelin-targeting therapies are currently being developed. However, the identification of patients potentially eligible for such a therapeutic strategy remains challenging. The objective of this study was to perform the radiolabeling and preclinical evaluation of 99mTc-A1 and 99mTc-C6, two antimesothelin single-domain antibody (sdAb)-derived imaging agents. Methods: A1 and C6 were radiolabeled with 99mTc and evaluated in vitro on recombinant protein and cells, as well as in vivo in xenograft mouse models of the triple-negative breast cancer cell lines HCC70 (mesothelin-positive) and MDA-MB-231 (mesothelin-negative). Results: Both 99mTc-A1 and 99mTc-C6 bound mesothelin with high affinity in vitro, with 99mTc-A1 affinity being 2.4-fold higher than that of 99mTc-C6 (dissociation constant, 43.9 ± 4.0 vs. 107 ± 16 nM, P < 0.05). 99mTc-A1 and 99mTc-C6 remained stable in vivo in murine blood (>80% at 2 h) and ex vivo in human blood (>90% at 6 h). In vivo 99mTc-A1 uptake (percentage injected dose) in HCC70 tumors was 5-fold higher than in MDA-MB-231 tumors and 1.5-fold higher than that of 99mTc-C6 (2.34% ± 0.36% vs. 0.48% ± 0.18% and 1.56% ± 0.43%, respectively, P < 0.01) and resulted in elevated tumor-to-background ratios. In vivo competition experiments demonstrated the specificity of 99mTc-A1 uptake in HCC70 tumors. Conclusion: Mesothelin-positive tumors were successfully identified by SPECT using 99mTc-A1 and 99mTc-C6. Considering its superior characteristics, 99mTc-A1 was selected as the most suitable tool for further clinical translation.
Collapse
Affiliation(s)
| | - Sandrine Bacot
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France; and
| | - Mitra Ahmadi
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France; and
| | - Brigitte Kerfelec
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Daniel Baty
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Marlene Debiossat
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France; and
| | - Audrey Soubies
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France; and
| | - Pascale Perret
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France; and
| | - Laurent Riou
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France; and
| | - Daniel Fagret
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France; and
| | - Alexis Broisat
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France; and
| | - Catherine Ghezzi
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France; and
| |
Collapse
|