1
|
Conscious rat PET imaging with soft immobilization for quantitation of brain functions: comprehensive assessment of anesthesia effects on cerebral blood flow and metabolism. EJNMMI Res 2021; 11:46. [PMID: 33963948 PMCID: PMC8106566 DOI: 10.1186/s13550-021-00787-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/28/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Animal brain functions evaluated by in vivo imaging under anesthesia can be affected by anesthetic agents, resulting in incorrect assessment of physiological brain function. We therefore performed dynamic positron emission tomography (PET) imaging of conscious rats using recently reported soft immobilization to validate the efficacy of the immobilization for brain function assessments. We also determined the effects of six anesthetic agents-a mixed anesthetic agent (MMB), ketamine + xylazine (KX), chloral hydrate (Chloral), pentobarbital (PTB), propofol (PF), and isoflurane (IFL)-on brain function by comparison with conscious rats. RESULTS The immobilization enabled 45-min dynamic [18F]FDG-PET acquisition with arterial blood sampling using conscious rats without the use of special techniques or invasive surgery. The spatial resolution and quantitativity of [18F]FDG-PET were not significantly lower for conscious rats than for anesthetized rats. While MMB, Chloral, PTB, and PF showed ubiquitous reduction in the cerebral metabolic rates of glucose (CMRglu) in brain regions, KX and IFL showed higher reductions in cerebellum and interbrain, and cerebellum, respectively. Cerebral blood flow (CBF) was reduced by MMB, KX, PTB, and PF; increased by IFL; and unaltered by Chloral. The magnitude of decrease in CMRglu and CBF for MMB were not larger than for other five anesthetic agents, although blood glucose levels and body temperature can be easily affected by MMB. CONCLUSION The six anesthetic agents induced various effects on CMRglu and CBF. The immobilization technique presented here is a promising tool for noninvasive brain functional imaging using conscious rats to avoid the effects of anesthetic agents.
Collapse
|
2
|
Feasibility of Longitudinal Brain PET with Real-Time Arterial Input Function in Rats. Mol Imaging Biol 2020; 23:350-360. [PMID: 33201350 DOI: 10.1007/s11307-020-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Preclinical dynamic brain PET studies remain hampered by the limitations related to the measurement of the arterial input function (AIF). In this regard, the use of an arterial-venous shunt is a promising method for the generation of real-time AIFs, but its application in longitudinal studies is still impeded by the cumbersome surgeries and high failure rates. We studied the feasibility and reproducibility of double arterial-venous shunt strategies for conducting longitudinal PET studies with real-time AIFs in rats. PROCEDURES We studied the feasibility of double arterial-venous shunts in rats in the right/left inguinal region and evaluated inter-animal and intra-animal AIF reproducibilities. Image-derived input function (IDIF) was also obtained for comparison. Dynamic brain FDG PET studies were conducted to estimate kinetic constants and Cerebral Metabolic Rate of Glucose (CMRglc) obtained from standard 2-tissue compartment (2TCM) and Patlak analysis. RESULTS We showed that longitudinal AIFs from double arterial-venous shunts can be obtained with very high success rate of the surgeries (88 %). Our results provided highly reproducible AIF measurements with low inter-animal variabilities (11 %) and intra-animal variabilities (5-10 %) that were included into the kinetic models, such that longitudinal rate constants and CMRglc can be efficiently estimated without bias associated to the double shunt. Our results indicated that longitudinal IDIF can be also generated without bias along time but showing higher intra-animal uncertainties. CONCLUSIONS We have demonstrated the feasibility and high reproducibility of conducting longitudinal AIF measurements and consequently accurate kinetic modeling using arterial shunt method.
Collapse
|
3
|
Goutal S, Tournier N, Guillermier M, Van Camp N, Barret O, Gaudin M, Bottlaender M, Hantraye P, Lavisse S. Comparative test-retest variability of outcome parameters derived from brain [18F]FDG PET studies in non-human primates. PLoS One 2020; 15:e0240228. [PMID: 33017429 PMCID: PMC7535063 DOI: 10.1371/journal.pone.0240228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Knowledge of the repeatability of quantitative parameters derived from [18F]FDG PET images is essential to define the group size and allow correct interpretation. Here we tested repeatability and accuracy of different [18F]FDG absolute and relative quantification parameters in a standardized preclinical setup in nonhuman primates (NHP). MATERIAL AND METHODS Repeated brain [18F]FDG scans were performed in 6 healthy NHP under controlled experimental factors likely to account for variability. Regional cerebral metabolic rate of glucose (CMRglu) was calculated using a Patlak plot with blood input function Semi-quantitative approaches measuring standard uptake values (SUV, SUV×glycemia and SUVR (SUV Ratio) using the pons or cerebellum as a reference region) were considered. Test-retest variability of all quantification parameters were compared in different brain regions in terms of absolute variability and intra-and-inter-subject variabilities. In an independent [18F]FDG PET experiment, robustness of these parameters was evaluated in 4 naive NHP. RESULTS Experimental conditions (injected dose, body weight, animal temperature) were the same at both imaging sessions (p >0.4). No significant difference in the [18F]FDG quantification parameters was found between test and retest sessions. Absolute variability of CMRglu, SUV, SUV×glycemia and normalized SUV ranged from 25 to 43%, 16 to 21%, 23 to 28%, and 7 to 14%, respectively. Intra-subject variability largely explained the absolute variability of all quantitative parameters. They were all significantly correlated to each other and they were all robust. Arterial and venous glycemia were highly correlated (r = 0.9691; p<0.0001). CONCLUSION [18F]FDG test-retest studies in NHP protocols need to be conducted under well-standardized experimental conditions to assess and select the most reliable and reproducible quantification approach. Furthermore, the choice of the quantification parameter has to account for the transversal or follow-up study design. If pons and cerebellum regions are not affected, non-invasive SUVR is the most favorable approach for both designs.
Collapse
Affiliation(s)
- Sébastien Goutal
- Laboratoire des Maladies Neurodégénératives, CEA, CNRS, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Martine Guillermier
- Laboratoire des Maladies Neurodégénératives, CEA, CNRS, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nadja Van Camp
- Laboratoire des Maladies Neurodégénératives, CEA, CNRS, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Olivier Barret
- Laboratoire des Maladies Neurodégénératives, CEA, CNRS, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Mylène Gaudin
- Laboratoire des Maladies Neurodégénératives, CEA, CNRS, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Michel Bottlaender
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
- UNIACT, Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Hantraye
- Laboratoire des Maladies Neurodégénératives, CEA, CNRS, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Sonia Lavisse
- Laboratoire des Maladies Neurodégénératives, CEA, CNRS, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Test-Retest Stability of Cerebral 2-Deoxy-2-[ 18F]Fluoro-D-Glucose ([ 18F]FDG) Positron Emission Tomography (PET) in Male and Female Rats. Mol Imaging Biol 2019; 21:240-248. [PMID: 29987619 DOI: 10.1007/s11307-018-1245-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE An important issue in rodent imaging is the question whether a mixed population of male and female animals can be used rather than animals of a single sex. For this reason, the present study examined the test-retest stability of positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in male rats and female rats at different phases of the estrous cycle. PROCEDURES Long-Evans rats (age 1 year) were divided into three groups: (1) males (n = 6), (2) females in metestrous (low estrogen levels, n = 9), and (3) females in proestrous (high estrogen levels, n = 7). Two standard [18F]FDG scans with rapid arterial blood sampling were made at an interval of 10 days in subjects anesthetized with isoflurane and oxygen. Body temperature, heart rate, and blood oxygenation were continuously monitored. Regional cerebral metabolic rates of glucose were calculated using a Patlak plot with plasma radioactivity as input function. RESULTS Regional metabolic rate of glucose (rCMRglucose) in male and female rats, or [18F]FDG uptake in females at proestrous and metestrous, was not significantly different, but females showed significantly higher standardized uptake values (SUVs) and Patlak flux than males, particularly in the initial scan. The relative difference between the scans and the test-retest variability (TRV) were greater in females than in males. Intra-class correlation coefficients (ICCs) of rCMRglucose, SUV, normalized SUV, and glucose flux were good to excellent in males but poor to moderate in females. CONCLUSIONS Based on these data for [18F]FDG, the mixing of sexes in imaging studies of the rodent brain will result in an impaired test-retest stability of PET data and a need for larger group sizes to maintain statistical power in group comparisons. The observed differences between males and females do not indicate any specific gender difference in cerebral metabolism but are related to different levels of non-radioactive glucose in blood plasma during isoflurane anesthesia.
Collapse
|
5
|
Suzuki C, Kosugi M, Magata Y. Noninvasive quantitation of rat cerebral blood flow using 99mTc-HMPAO-assessment of input function with dynamic chest planar imaging. EJNMMI Res 2018. [PMID: 29523980 PMCID: PMC5845090 DOI: 10.1186/s13550-018-0375-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral blood flow (CBF) quantitation using technetium-99m hexamethylpropyleneamine oxime (99mTc-HMPAO) generally requires assessment of input function by arterial blood sampling, which would be invasive for small animals. We therefore performed chest dynamic planar imaging, instead of arterial blood sampling, to estimate the input function and establish noninvasive quantitation method of rat CBF using the image-derived input function. RESULTS Integrated radioactivity concentration in the heart-blood pool on planar images (AUCBlood-planar) was identical to that in arterial blood samples (AUCBlood-sampling). Radioactivity concentration in the brain determined by SPECT imaging (CBrain-SPECT) was identical to that using brain sampling (CBrain-sampling). Noninvasively calculated CBF obtained by dividing CBrain-SPECT by AUCBlood-planar was well correlated with conventionally estimated CBF obtained by dividing CBrain-sampling by AUCBlood-sampling. CONCLUSION Rat CBF could be noninvasively quantitated using 99mTc-HMPAO chest dynamic planar imaging and head SPECT imaging without arterial blood sampling.
Collapse
Affiliation(s)
- Chie Suzuki
- Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mutsumi Kosugi
- Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yasuhiro Magata
- Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|