1
|
Hu Y, Zhong X, Peng D, Zhao L. Iodinated contrast media (ICM)-induced thyroid dysfunction: a review of potential mechanisms and clinical management. Clin Exp Med 2025; 25:132. [PMID: 40299149 PMCID: PMC12040987 DOI: 10.1007/s10238-025-01664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Iodinated contrast media (ICM) are extensively utilized in medical imaging to enhance tissue contrast, yet their impact on thyroid function has attracted increasing attention in recent years. ICM can induce thyroid dysfunction, with reported prevalence ranging from 1 to 15% and a higher incidence observed in individuals with pre-existing thyroid conditions or other risk factors like age, gender, underlying health issues, and repeated ICM exposure. This review summarized the classification of ICM and the potential mechanisms, risk assessment, and clinical management of ICM-induced thyroid dysfunction, especially in vulnerable populations such as pregnant women and elderly patients. Despite advancements that have enriched our understanding of the pathophysiology and treatment of ICM-induced thyroid dysfunction, critical knowledge gaps remain, such as the long-term effects of ICM on thyroid function, the dose-response relationship between ICM volume and thyroid dysfunction risk, and the ecological impacts of ICM. Therefore, further exploration of the underlying mechanisms of ICM-induced thyroid dysfunction and optimization of the management strategies will be crucial for the safe and effective use of ICM in clinical practice, and collaborative efforts between clinicians and researchers are essential to ensure that the risks of thyroid dysfunction do not outweigh the benefits of imaging.
Collapse
Affiliation(s)
- Yaxi Hu
- Department of Radiology, West China Hospital, Sichuan University, No.37, Guoxue Road, Chengdu, 610041, China
| | - Xia Zhong
- Department of Radiology, West China Hospital, Sichuan University, No.37, Guoxue Road, Chengdu, 610041, China
| | - Dan Peng
- Department of Radiology, West China Hospital, Sichuan University, No.37, Guoxue Road, Chengdu, 610041, China
| | - Lihong Zhao
- Department of Radiology, West China Hospital, Sichuan University, No.37, Guoxue Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Lu K, Zhang R, Wang H, Li C, Yang Z, Xu K, Cao X, Wang N, Cai W, Zeng J, Gao M. PEGylated Ultrasmall Iron Oxide Nanoparticles as MRI Contrast Agents for Vascular Imaging and Real-Time Monitoring. ACS NANO 2025; 19:3519-3530. [PMID: 39818797 DOI: 10.1021/acsnano.4c13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Accurate imaging evaluations of pre- and post-treatment of cardiovascular diseases are pivotal for effective clinical interventions and improved patient outcomes. However, current imaging methods lack real-time monitoring capabilities with a high contrast and resolution during treatments. This study introduces PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs), which have undergone comprehensive safety evaluations, boasting an r1 value of 6.31 mM-1 s-1, for contrast-enhanced magnetic resonance angiography (MRA). Systematic comparisons against common clinical methods in rabbits reveal that PUSIONPs-enhanced MRA exhibited improved vascular contrast, clearer vascular boundaries, and superior vessel resolution. Moreover, owing to their nanosize, PUSIONPs demonstrate significantly prolonged blood circulation compared to small molecular contrast agents such as Magnevist and Ultravist. This extended circulation enables captivating real-time monitoring of thrombolysis treatment for up to 4 h in rabbit models postsingle contrast agent injection. Additionally, in larger animal models such as beagles and Bama minipigs, PUSIONPs-enhanced MRA also showcases superior contrast effects, boundary delineation, and microvessel visualization, underscoring their potential to transform cardiovascular imaging, particularly in real-time monitoring and high-resolution visualization during treatment processes.
Collapse
Affiliation(s)
- Kuan Lu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hongzhao Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhe Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Keyang Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Xiaoyi Cao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Wu Cai
- The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
- School of life Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Solodkiy VA, Galushko DA, Kuznetsov AM. [Simultaneous surgery for papillary thyroid cancer with lymph node metastases combined with common carotid artery stenosis]. Khirurgiia (Mosk) 2021:88-92. [PMID: 34786921 DOI: 10.17116/hirurgia202111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors report simultaneous surgical treatment of papillary cancer of the left thyroid lobe with lymph nodes metastases and left common carotid artery stenosis over 70%. Carotid endarterectomy at the first stage made it possible to reduce the risk of perioperative stroke, restore adequate blood flow through the carotid arteries and simultaneously perform total resection for thyroid carcinoma.
Collapse
Affiliation(s)
- V A Solodkiy
- Russian Research Center of Radiology, Moscow, Russia
| | - D A Galushko
- Russian Research Center of Radiology, Moscow, Russia
| | | |
Collapse
|
4
|
Sneha KR, Sailaja GS. Intrinsically radiopaque biomaterial assortments: a short review on the physical principles, X-ray imageability, and state-of-the-art developments. J Mater Chem B 2021; 9:8569-8593. [PMID: 34585717 DOI: 10.1039/d1tb01513c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
X-ray attenuation ability, otherwise known as radiopacity of a material, could be indisputably tagged as the central and decisive parameter that produces contrast in an X-ray image. Radiopaque biomaterials are vital in the healthcare sector that helps clinicians to track them unambiguously during pre and post interventional radiological procedures. Medical imaging is one of the most powerful resources in the diagnostic sector that aids improved treatment outcomes for patients. Intrinsically radiopaque biomaterials enable themselves for visual targeting/positioning as well as to monitor their fate and further provide the radiologists with critical insights about the surgical site. Moreover, the emergence of advanced real-time imaging modalities is a boon to the contemporary healthcare systems that allow to perform minimally invasive surgical procedures and thereby reduce the healthcare costs and minimize patient trauma. X-ray based imaging is one such technologically upgraded diagnostic tool with many variants like digital X-ray, computed tomography, digital subtraction angiography, and fluoroscopy. In light of these facts, this review is aimed to briefly consolidate the physical principles of X-ray attenuation by a radiopaque material, measurement of radiopacity, classification of radiopaque biomaterials, and their recent advanced applications.
Collapse
Affiliation(s)
- K R Sneha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India.
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India. .,Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi - 682022, India.,Centre for Advanced Materials, CUSAT, Kochi - 682022, India
| |
Collapse
|
5
|
Hu Q, Han X, Dong G, Yan W, Wang X, Bigambo FM, Fang K, Xia Y, Chen T, Wang X. Association between mercury exposure and thyroid hormones levels: A meta-analysis. ENVIRONMENTAL RESEARCH 2021; 196:110928. [PMID: 33640496 DOI: 10.1016/j.envres.2021.110928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The relationship between mercury (Hg) exposure and thyroid hormones (THs) levels in the general population has been inconclusive. We conducted a random effects model meta-analysis to identify the association between Hg exposure and THs levels in the general population. METHODS This meta-analysis were performed based on the PECO questions (P = general population; E =1ug/L Hg in blood and urine; C =1ug/L incremental increase on; and O = variation of THs levels). We searched four electronic databases including PubMed, Web of Science, Embase, and Cochrane Library for studies published on or before 20th July 2020. Prospective and cross-sectional studies that evaluated the association between Hg exposure and the levels of thyroid stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), and free thyroxine (FT4) were included. We also assessed aggregate risks for the reliability of the included studies. RESULTS Initially, we retrieved 4889 articles. 18 studies met our inclusion criteria after screening and 13 articles were eligible to be included in the meta-analysis. The meta-analysis results suggest that blood Hg may be significantly associated with THs levels. The presence of Hg in blood may significantly increase the levels of TSH (β=0.55; 95%CI: 0.20,0.90; p < 0.001) and FT4 (β=0.47; 95%CI: 0.11,0.82; p < 0.001), with the opposite association in T4 (β=-0.02; 95%CI: 0.02, -0.01; p < 0.001). For the subgroup analysis, blood Hg was positively correlated with TSH levels in children and adolescents (β=0.62; 95%CI: 0.09, 1.15; p < 0.001) and FT4 levels in pregnant women (β=1.00; 95%CI: 0.99, 1.00; p < 0.001) respectively. CONCLUSIONS This meta-analysis indicates that exposure to Hg in blood could significantly corrrelate with the levels of TSH, T4, and FT4 in the general population. Therefore, it is crucial to control the use of Hg and strengthen protection of the thyroid.
Collapse
Affiliation(s)
- Qi Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guangzhu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wu Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xu Wang
- Children's hospital of Nanjing medical university, Nanjing, China
| | - Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Kacey Fang
- Department of Cognitive Science, Yale University, New Haven, CT, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Chen
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
De la Vieja A, Riesco-Eizaguirre G. Radio-Iodide Treatment: From Molecular Aspects to the Clinical View. Cancers (Basel) 2021; 13:cancers13050995. [PMID: 33673669 PMCID: PMC7957486 DOI: 10.3390/cancers13050995] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This year marks the 80th commemoration of the first time that radio-iodide treatment (RAI) was used. RAI is one of the most effective targeted internal radiation anticancer therapies ever devised and it has been used for many decades, however, a thorough understanding of the underlying molecular mechanisms involved could greatly improve the success of this therapy. This is an in-depth innovative review focusing on the molecular mechanisms underlying radio-iodide therapy in thyroid cancer and how the alteration of these mechanisms affects the results in the clinic. Abstract Thyroid radio-iodide therapy (RAI) is one of the oldest known and used targeted therapies. In thyroid cancer, it has been used for more than eight decades and is still being used to improve thyroid tumor treatment to eliminate remnants after thyroid surgery, and tumor metastases. Knowledge at the molecular level of the genes/proteins involved in the process has led to improvements in therapy, both from the point of view of when, how much, and how to use the therapy according to tumor type. The effectiveness of this therapy has spread into other types of targeted therapies, and this has made sodium/iodide symporter (NIS) one of the favorite theragnostic tools. Here we focus on describing the molecular mechanisms involved in radio-iodide therapy and how the alteration of these mechanisms in thyroid tumor progression affects the diagnosis and results of therapy in the clinic. We analyze basic questions when facing treatment, such as: (1) how the incorporation of radioiodine in normal, tumor, and metastatic thyroid cells occurs and how it is regulated; (2) the pros and cons of thyroid hormonal deprivation vs. recombinant human Thyroid Stimulating Hormone (rhTSH) in radioiodine residence time, treatment efficacy, thyroglobulin levels and organification, and its influence on diagnostic imaging tests and metastasis treatment; and (3) the effect of stunning and the possible causes. We discuss the possible incorporation of massive sequencing data into clinical practice, and we conclude with a socioeconomical and clinical vision of the above aspects.
Collapse
Affiliation(s)
- Antonio De la Vieja
- Endocrine Tumors Unit (Unidad Funcional de Investigación en Enfermedades Endocrinas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-918223270
| | - Garcilaso Riesco-Eizaguirre
- Departamento de Endocrinología y Nutrición, Hospital Universitario de Móstoles, 28935 Madrid, Spain
- Molecular Endocrinology Group, Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
7
|
Cambien B, Lebrigand K, Baeri A, Nottet N, Compin C, Lamit A, Ferraris O, Peyrefitte CN, Magnone V, Henriques J, Zaragosi LE, Giorgetti-Peraldi S, Bost F, Gautier-Isola M, Rezzonico R, Barbry P, Barthel R, Mari B, Vassaux G. Identification of oncolytic vaccinia restriction factors in canine high-grade mammary tumor cells using single-cell transcriptomics. PLoS Pathog 2020; 16:e1008660. [PMID: 33075093 PMCID: PMC7595618 DOI: 10.1371/journal.ppat.1008660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/29/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication. The identification of cellular genes influencing viral replication/propagation has been studied using hypothesis-driven approaches and/or high-throughput RNA interference screens. In the present report, we propose a methodology based on single-cell transcriptomics. We have studied, in the context of oncolytic virotherapy, the susceptibility of different grades of primary low-passage mammary carcinoma cells of canine origin to an oncolytic vaccinia virus (VV). We highlight a fault in replication of VV in cells that originated from high-grade triple-negative breast carcinomas (TNBC). Single-cell RNA-seq performed on TNBC cell samples infected with VV suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. We also demonstrate that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. Beyond the field of cancer gene therapy, we demonstrate here that single-cell transcriptomics increases the arsenal of tools available to identify cellular factors influencing viral replication.
Collapse
Affiliation(s)
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | - Alberto Baeri
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | - Nicolas Nottet
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | | | - Audrey Lamit
- Université Côte d'Azur, CEA, Laboratoire TIRO, Nice France
| | - Olivier Ferraris
- Institut de recherche biomédicale des armées, Université de Lyon, Lyon, France
| | | | - Virginie Magnone
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | | | | | | | | | | | - Roger Rezzonico
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | - Georges Vassaux
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
- * E-mail:
| |
Collapse
|
8
|
Lan W, Renjie W, Qichang W, Feiyue T, Qingjie M, Bin J. Preoperative Use of Intravenous Contrast Media Is Associated With Decreased Excellent Response Rates in Intermediate-Risk DTC Patients Who Subsequently Receive Total Thyroidectomy and Low-Dose RAI Therapy. Front Oncol 2020; 10:1297. [PMID: 33042786 PMCID: PMC7522438 DOI: 10.3389/fonc.2020.01297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/22/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: To evaluate the impact of preoperative use of intravenous contrast media (ICM) on the excellent response (ER) rates in a cohort of intermediate-risk differentiated thyroid cancer (DTC) patients who received total thyroidectomy (TT) and low-dose radioactive iodine (RAI) therapy. Methods: A total of 683 consecutive patients were retrospectively reviewed in a single center between August 2016 and August 2018. Patients were divided into ICM group (n = 532) and non-ICM group (n = 151). Intravenous contrast media patients were 1:1 propensity matched to non-ICM patients based on T stage, N stage, and urinary iodine. Risk-adjusted logistic regression models were constructed to assess the association between the use of ICM and ER rates. Results: Intravenous contrast media patients had significantly higher T stage (P < 0.001), N stage (P < 0.001), urinary iodine (P < 0.001), and ps-Tg (P = 0.042) than non-ICM patients. Preoperative use of ICM was found to be significantly associated with decreased ER rates in both the primary cohort [odds ratio (OR) = 0.47, 95% confidence interval (CI) = 0.32–0.71; P < 0.001] and the matched cohort (OR = 0.48, 95% CI = 0.25–0.94; P = 0.031). Subgroup analysis on RAI delay time in the primary cohort revealed that ER rates in ICM patients were significantly lower than that of non-ICM patients for 1–2 months (P = 0.0245) and >2–3 months (P = 0.0221) subgroups, but not for >3–4 months, >4–5 months, and >5–6 months subgroups (all P > 0.05). A delay time of >3–4 months exhibited the highest ER rate (63.08%) within the ICM group. Conclusions: Preoperative use of ICM is associated with decreased ER rates in intermediate-risk DTC patients who subsequently receive TT and low-dose RAI therapy. For such patients, if ICM has already been received, an RAI delay time of >3–4 months would seem to be more appropriate to achieve better ER rates.
Collapse
Affiliation(s)
- Wei Lan
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Wang Renjie
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Wan Qichang
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Teng Feiyue
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Ma Qingjie
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
- Ma Qingjie
| | - Ji Bin
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
- *Correspondence: Ji Bin
| |
Collapse
|
9
|
Proteomic Analysis of Iodinated Contrast Agent-Induced Perturbation of Thyroid Iodide Uptake. J Clin Med 2020; 9:jcm9020329. [PMID: 31979418 PMCID: PMC7073936 DOI: 10.3390/jcm9020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
(1) Background: We recently showed that iodinated contrast media (ICM) reduced thyroid uptake of iodide independently of free iodide through a mechanism different from that of NaI and involving a dramatic and long-lasting decrease in Na/I symporter expression. The present study aimed at comparing the response of the thyroid to ICM and NaI using a quantitative proteomic approach. (2) Methods: Scintiscans were performed on ICM-treated patients. Micro Single-Photon Emission Computed Tomography (microSPECT/CT) imaging was used to assess thyroid uptakes in ICM- or NaI-treated mice and their response to recombinant human thyroid-stimulating hormone. Total thyroid iodide content and proteome was determined in control, NaI-, or ICM-treated animals. (3) Results: The inhibitory effect of ICM in patients was selectively observed on thyroids but not on salivary glands for up to two months after a systemic administration. An elevated level of iodide was observed in thyroids from NaI-treated mice but not in those from ICM animals. Exposure of the thyroid to NaI modulates 15 cellular pathways, most of which are also affected by ICM treatment (including the elF4 and P706SK cell signaling pathway and INSR identified as an upstream activator in both treatments). In addition, ICM modulates 16 distinct pathways and failed to affect thyroid iodide content. Finally, administration of ICM reduces thyroid-stimulating hormone (TSH) receptor expression which results in a loss of TSH-induced iodide uptake by the thyroid. (4) Conclusions: Common intracellular mechanisms are involved in the ICM- and NaI-induced reduction of iodide uptake. However, ICM fails to affect thyroid iodide content which suggests that the modulation of these common pathways is triggered by separate effectors. ICM also modulates numerous distinct pathways which may account for its long-lasting effect on thyroid uptake. These observations may have implications in the management of patients affected by differentiated thyroid carcinomas who have been exposed to ICM. They also provide the basis for the utilization of ICM-based compounds in radioprotection of the thyroid.
Collapse
|
10
|
Punzón I, Mauduit D, Holvoet B, Thibaud JL, de Fornel P, Deroose CM, Blanchard-Gutton N, Vilquin JT, Sampaolesi M, Barthélémy I, Blot S. In Vivo Myoblasts Tracking Using the Sodium Iodide Symporter Gene Expression in Dogs. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:317-327. [PMID: 32577429 PMCID: PMC7293195 DOI: 10.1016/j.omtm.2019.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023]
Abstract
Stem cell-based therapies are a promising approach for the treatment of degenerative muscular diseases; however, clinical trials have shown inconclusive and even disappointing results so far. Noninvasive cell monitoring by medicine imaging could improve the understanding of the survival and biodistribution of cells following injection. In this study, we assessed the canine sodium iodide symporter (cNIS) reporter gene as an imaging tool to track by single-photon emission computed tomography (SPECT/CT) transduced canine myoblasts after intramuscular (IM) administrations in dogs. cNIS-expressing cells kept their myogenic capacities and showed strong 99 mTc-pertechnetate (99 mTcO4−) uptake efficiency both in vitro and in vivo. cNIS expression allowed visualization of cells by SPECT/CT along time: 4 h, 48 h, 7 days, and 30 days after IM injection; biopsies collected 30 days post administration showed myofiber’s membranes expressing cNIS. This study demonstrates that NIS can be used as a reporter to track cells in vivo in the skeletal muscle of large animals. Our results set a proof of concept of the benefits NIS-tracking tool may bring to the already challenging cell-based therapies arena in myopathies and pave the way to a more efficient translation to the clinical setting from more accurate pre-clinical results.
Collapse
Affiliation(s)
- Isabel Punzón
- INSERM U955-E10, IMRB, Université Paris Est Créteil, Ecole nationale vétérinaire d'Alfort, 94700 Maisons-Alfort, France
| | - David Mauduit
- INSERM U955-E10, IMRB, Université Paris Est Créteil, Ecole nationale vétérinaire d'Alfort, 94700 Maisons-Alfort, France
| | - Bryan Holvoet
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | | | | | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Nicolas Blanchard-Gutton
- INSERM U955-E10, IMRB, Université Paris Est Créteil, Ecole nationale vétérinaire d'Alfort, 94700 Maisons-Alfort, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Inès Barthélémy
- INSERM U955-E10, IMRB, Université Paris Est Créteil, Ecole nationale vétérinaire d'Alfort, 94700 Maisons-Alfort, France
| | - Stéphane Blot
- INSERM U955-E10, IMRB, Université Paris Est Créteil, Ecole nationale vétérinaire d'Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
11
|
Chen J, Li C, Hong H, Liu H, Wang C, Xu M, Han Y, Liu Z. Side Chain Optimization Remarkably Enhances the in Vivo Stability of 18F-Labeled Glutamine for Tumor Imaging. Mol Pharm 2019; 16:5035-5041. [PMID: 31670970 DOI: 10.1021/acs.molpharmaceut.9b00891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Similar to glycolysis, glutaminolysis acts as a vital energy source in tumor cells, providing building blocks for the metabolic needs of tumor cells. To capture glutaminolysis in tumors, 18F-(2S,4R)4-fluoroglutamine ([18F]FGln) and 18F-fluoroboronoglutamine ([18F]FBQ) have been successfully developed for positron emission tomography (PET) imaging, but these two molecules lack stability, resulting in undesired yet significant bone uptake. In this study, we found that [18F]FBQ-C2 is a stable Gln PET tracer by adding two more methylene groups to the side chain of [18F]FBQ. [18F]FBQ-C2 was synthesized with a good radiochemical yield of 35% and over 98% radiochemical purity. [18F]FBQ-C2 showed extreme stability in vitro, and no defluorination was observed after 2 h in phosphate buffered saline at 37 °C. The competitive inhibition assay results indicated that [18F]FBQ-C2 enters cells via the system ASC and N, similar to natural glutamine, and can be transported by tumor-overexpressed ASCT2. PET imaging and biodistribution results indicated that [18F]FBQ-C2 is stable in vivo with low bone uptake (0.81 ± 0.20% ID/g) and can be cleared rapidly from most tissues. Dynamic scan and pharmacokinetic studies using BGC823-xenograft-bearing mice revealed that [18F]FBQ-C2 accumulates specifically in tumors, with a longer half-life (101.18 ± 6.50 min) in tumor tissues than in other tissues (52.70 ± 12.44 min in muscle). Biodistribution exhibits a high tumor-to-normal tissue ratio (4.8 ± 1.7 for the muscle, 2.5 ± 1.0 for the stomach, 2.2 ± 0.9 for the liver, and 17.8 ± 8.4 for the brain). In conclusion, [18F]FBQ-C2 can be used to perform high-contrast Gln imaging of tumors and can serve as a PET tracer for clinical research.
Collapse
Affiliation(s)
- Junyi Chen
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cong Li
- Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| | - Hanyu Hong
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhong Wang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengxin Xu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuxiang Han
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
12
|
Le Goas M, Paquet M, Paquirissamy A, Guglielmi J, Compin C, Thariat J, Vassaux G, Geertsen V, Humbert O, Renault JP, Carrot G, Pourcher T, Cambien B. Improving 131I Radioiodine Therapy By Hybrid Polymer-Grafted Gold Nanoparticles. Int J Nanomedicine 2019; 14:7933-7946. [PMID: 31686819 PMCID: PMC6777639 DOI: 10.2147/ijn.s211496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human trials combining external radiotherapy (RT) and metallic nanoparticles are currently underway in cancer patients. For internal RT, in which a radioisotope such as radioiodine is systemically administered into patients, there is also a need for enhancing treatment efficacy, decreasing radiation-induced side effects and overcoming radio-resistance. However, if strategies vectorising radioiodine through nanocarriers have been documented, sensitizing the neoplasm through the use of nanotherapeutics easily translatable to the clinic in combination with the standard systemic radioiodine treatment has not been assessed yet. METHOD AND MATERIALS The present study explored the potential of hybrid poly(methacrylic acid)-grafted gold nanoparticles to improve the performances of systemic 131I-mediated RT on cancer cells and in tumor-bearing mice. Such nanoparticles were chosen based on their ability previously described by our group to safely withstand irradiation doses while exhibiting good biocompatibility and enhanced cellular uptake. RESULTS In vitro clonogenic assays performed on melanoma and colorectal cancer cells showed that poly(methacrylic acid)-grafted gold nanoparticles (PMAA-AuNPs) could efficiently lead to a marked tumor cell mortality when combined to a low activity of radioiodine, which alone appeared to be essentially ineffective on tumor cells. In vivo, tumor enrichment with PMAA-AuNPs significantly enhanced the killing potential of a systemic radioiodine treatment. CONCLUSION This is the first report of a simple and reliable nanomedicine-based approach to reduce the dose of radioiodine required to reach curability. In addition, these results open up novel perspectives for using high-Z metallic NPs in additional molecular radiation therapy demonstrating heterogeneous dose distributions.
Collapse
Affiliation(s)
- Marine Le Goas
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie Paquet
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
- Nuclear Medicine Department, Centre Antoine Lacassagne, Nice, France
| | - Aurélie Paquirissamy
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julien Guglielmi
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| | - Cathy Compin
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, Université de Normandie, Caen, France
| | - Georges Vassaux
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| | - Valérie Geertsen
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Humbert
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
- Nuclear Medicine Department, Centre Antoine Lacassagne, Nice, France
| | - Jean-Philippe Renault
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Géraldine Carrot
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| | - Béatrice Cambien
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| |
Collapse
|
13
|
Abstract
BACKGROUND The management of aggressive and progressing metastatic differentiated thyroid cancer (DTC) is very difficult, and the determination as to when such patients are refractory to 131I therapy (e.g., radioiodine refractory) is problematic and controversial. OBJECTIVE The objective of this review is to discuss (i) the present major classifications of radioiodine refractory disease in DTC, (ii) factors that should be considered before designating a patient's DTC as radioiodine refractory, (iii) potential approaches and caveats to help manage and minimize a patient's exclusion from an 131I therapy that may have potential benefit in patients with aggressive and progressing metastatic DTC, (iv) next steps for revision of the classifications of radioiodine refractory DTC, and (v) areas for future research. SUMMARY To date, the classifications of radioiodine refractory DTC, although very useful, are not sacrosanct especially in the context of individualized patient management, and merely because a patient meets one or more of the various classifications, one should not consider by definition, fiat, or de facto that that a patient's DTC is radioiodine refractory. Rather, each patient should be individually managed with a good understanding of the limitations of the various classifications and potential approaches to help manage that patient. With awareness of the suggestions and caveats discussed herein and with assessment of the many other factors that affect the patient's specific clinical situation, the managing physician can deliver appropriate individualized patient care. A multi-organizational committee should be established as a standing committee to supervise and assist in the update of the classifications of radioiodine refractory DTC, including discussions of their limitations. CONCLUSION Classifications to help determine radioiodine refractory disease will continue to evolve as (i) more studies are published, (ii) managing physicians better understand the limitations and confounding factors of present classifications, and (iii) new agents either increase or reestablish 131I uptake.
Collapse
Affiliation(s)
- Douglas Van Nostrand
- Nuclear Medicine Research, MedStar Health Research Institute and Washington Hospital Center , Washington, DC
| |
Collapse
|